"host/driver_offline/CMakeLists.txt" did not exist on "fbdf4332c79a18454a553105ae5373911b2ba4ce"
run_pplm_discrim_train.py 20 KB
Newer Older
1
2
3
#! /usr/bin/env python3
# coding=utf-8

Rosanne Liu's avatar
Rosanne Liu committed
4
5
6
7
8
9
10
11
12
13
14
15
16
#Copyright (c) 2019 Uber Technologies, Inc.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

import argparse
import csv
import json
import math
import time

import numpy as np
import torch
import torch.nn.functional as F
import torch.optim
import torch.optim as optim
import torch.utils.data as data
from nltk.tokenize.treebank import TreebankWordDetokenizer
from torchtext import data as torchtext_data
from torchtext import datasets
piero's avatar
piero committed
33
from tqdm import tqdm, trange
34

35
from transformers import GPT2Tokenizer, GPT2LMHeadModel
36
from pplm_classification_head import ClassificationHead
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

torch.manual_seed(0)
np.random.seed(0)
EPSILON = 1e-10
example_sentence = "This is incredible! I love it, this is the best chicken I have ever had."
max_length_seq = 100




class Discriminator(torch.nn.Module):
    """Transformer encoder followed by a Classification Head"""

    def __init__(
            self,
            class_size,
            pretrained_model="gpt2-medium",
w4nderlust's avatar
w4nderlust committed
54
55
            cached_mode=False,
            device='cpu'
56
57
58
59
60
61
62
63
64
65
    ):
        super(Discriminator, self).__init__()
        self.tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model)
        self.encoder = GPT2LMHeadModel.from_pretrained(pretrained_model)
        self.embed_size = self.encoder.transformer.config.hidden_size
        self.classifier_head = ClassificationHead(
            class_size=class_size,
            embed_size=self.embed_size
        )
        self.cached_mode = cached_mode
w4nderlust's avatar
w4nderlust committed
66
        self.device = device
67
68
69
70
71
72
73
74
75
76
77
78

    def get_classifier(self):
        return self.classifier_head

    def train_custom(self):
        for param in self.encoder.parameters():
            param.requires_grad = False
        self.classifier_head.train()

    def avg_representation(self, x):
        mask = x.ne(0).unsqueeze(2).repeat(
            1, 1, self.embed_size
w4nderlust's avatar
w4nderlust committed
79
        ).float().to(self.device).detach()
80
81
82
83
84
85
86
87
88
        hidden, _ = self.encoder.transformer(x)
        masked_hidden = hidden * mask
        avg_hidden = torch.sum(masked_hidden, dim=1) / (
                torch.sum(mask, dim=1).detach() + EPSILON
        )
        return avg_hidden

    def forward(self, x):
        if self.cached_mode:
w4nderlust's avatar
w4nderlust committed
89
            avg_hidden = x.to(self.device)
90
        else:
w4nderlust's avatar
w4nderlust committed
91
            avg_hidden = self.avg_representation(x.to(self.device))
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

        logits = self.classifier_head(avg_hidden)
        probs = F.log_softmax(logits, dim=-1)

        return probs


class Dataset(data.Dataset):
    def __init__(self, X, y):
        """Reads source and target sequences from txt files."""
        self.X = X
        self.y = y

    def __len__(self):
        return len(self.X)

    def __getitem__(self, index):
        """Returns one data pair (source and target)."""
        data = {}
piero's avatar
piero committed
111
112
        data["X"] = self.X[index]
        data["y"] = self.y[index]
113
114
115
116
117
118
119
120
121
122
        return data


def collate_fn(data):
    def pad_sequences(sequences):
        lengths = [len(seq) for seq in sequences]

        padded_sequences = torch.zeros(
            len(sequences),
            max(lengths)
piero's avatar
piero committed
123
        ).long()  # padding value = 0
124
125
126
127
128
129
130
131
132
133
134

        for i, seq in enumerate(sequences):
            end = lengths[i]
            padded_sequences[i, :end] = seq[:end]

        return padded_sequences, lengths

    item_info = {}
    for key in data[0].keys():
        item_info[key] = [d[key] for d in data]

piero's avatar
piero committed
135
136
    x_batch, _ = pad_sequences(item_info["X"])
    y_batch = torch.tensor(item_info["y"], dtype=torch.long)
137
138
139
140
141
142
143
144
145

    return x_batch, y_batch


def cached_collate_fn(data):
    item_info = {}
    for key in data[0].keys():
        item_info[key] = [d[key] for d in data]

piero's avatar
piero committed
146
147
    x_batch = torch.cat(item_info["X"], 0)
    y_batch = torch.tensor(item_info["y"], dtype=torch.long)
148
149
150
151
152

    return x_batch, y_batch


def train_epoch(data_loader, discriminator, optimizer,
w4nderlust's avatar
w4nderlust committed
153
                epoch=0, log_interval=10, device='cpu'):
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    samples_so_far = 0
    discriminator.train_custom()
    for batch_idx, (input_t, target_t) in enumerate(data_loader):
        input_t, target_t = input_t.to(device), target_t.to(device)

        optimizer.zero_grad()

        output_t = discriminator(input_t)
        loss = F.nll_loss(output_t, target_t)
        loss.backward(retain_graph=True)
        optimizer.step()

        samples_so_far += len(input_t)

        if batch_idx % log_interval == 0:
            print(
piero's avatar
piero committed
170
                "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
171
172
173
174
175
176
177
                    epoch + 1,
                    samples_so_far, len(data_loader.dataset),
                    100 * samples_so_far / len(data_loader.dataset), loss.item()
                )
            )


w4nderlust's avatar
w4nderlust committed
178
def evaluate_performance(data_loader, discriminator, device='cpu'):
179
180
181
182
183
184
185
186
    discriminator.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for input_t, target_t in data_loader:
            input_t, target_t = input_t.to(device), target_t.to(device)
            output_t = discriminator(input_t)
            # sum up batch loss
piero's avatar
piero committed
187
            test_loss += F.nll_loss(output_t, target_t, reduction="sum").item()
188
189
190
191
192
193
194
            # get the index of the max log-probability
            pred_t = output_t.argmax(dim=1, keepdim=True)
            correct += pred_t.eq(target_t.view_as(pred_t)).sum().item()

    test_loss /= len(data_loader.dataset)

    print(
piero's avatar
piero committed
195
196
        "Performance on test set: "
        "Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)".format(
197
198
199
200
201
202
            test_loss, correct, len(data_loader.dataset),
            100. * correct / len(data_loader.dataset)
        )
    )


w4nderlust's avatar
w4nderlust committed
203
def predict(input_sentence, model, classes, cached=False, device='cpu'):
204
    input_t = model.tokenizer.encode(input_sentence)
205
    input_t = torch.tensor([input_t], dtype=torch.long, device=device)
206
207
208
209
    if cached:
        input_t = model.avg_representation(input_t)

    log_probs = model(input_t).data.cpu().numpy().flatten().tolist()
piero's avatar
piero committed
210
211
    print("Input sentence:", input_sentence)
    print("Predictions:", ", ".join(
212
213
214
215
216
        "{}: {:.4f}".format(c, math.exp(log_prob)) for c, log_prob in
        zip(classes, log_probs)
    ))


w4nderlust's avatar
w4nderlust committed
217
218
def get_cached_data_loader(dataset, batch_size, discriminator,
                           shuffle=False, device='cpu'):
219
220
221
222
223
224
    data_loader = torch.utils.data.DataLoader(dataset=dataset,
                                              batch_size=batch_size,
                                              collate_fn=collate_fn)

    xs = []
    ys = []
piero's avatar
piero committed
225
    for batch_idx, (x, y) in enumerate(tqdm(data_loader, ascii=True)):
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
        with torch.no_grad():
            x = x.to(device)
            avg_rep = discriminator.avg_representation(x).cpu().detach()
            avg_rep_list = torch.unbind(avg_rep.unsqueeze(1))
            xs += avg_rep_list
            ys += y.cpu().numpy().tolist()

    data_loader = torch.utils.data.DataLoader(
        dataset=Dataset(xs, ys),
        batch_size=batch_size,
        shuffle=shuffle,
        collate_fn=cached_collate_fn)

    return data_loader


def train_discriminator(
piero's avatar
piero committed
243
        dataset, dataset_fp=None, pretrained_model="gpt2-medium",
244
        epochs=10, batch_size=64, log_interval=10,
piero's avatar
piero committed
245
246
        save_model=False, cached=False, no_cuda=False):
    device = "cuda" if torch.cuda.is_available() and not no_cuda else "cpu"
247

piero's avatar
piero committed
248
    print("Preprocessing {} dataset...".format(dataset))
249
250
    start = time.time()

piero's avatar
piero committed
251
    if dataset == "SST":
252
253
254
255
256
257
258
        idx2class = ["positive", "negative", "very positive", "very negative",
                     "neutral"]
        class2idx = {c: i for i, c in enumerate(idx2class)}

        discriminator = Discriminator(
            class_size=len(idx2class),
            pretrained_model=pretrained_model,
w4nderlust's avatar
w4nderlust committed
259
260
            cached_mode=cached,
            device=device
261
262
263
264
265
266
267
268
269
270
271
272
273
        ).to(device)

        text = torchtext_data.Field()
        label = torchtext_data.Field(sequential=False)
        train_data, val_data, test_data = datasets.SST.splits(
            text,
            label,
            fine_grained=True,
            train_subtrees=True,
        )

        x = []
        y = []
piero's avatar
piero committed
274
        for i in trange(len(train_data), ascii=True):
275
276
277
278
279
280
281
282
283
284
285
            seq = TreebankWordDetokenizer().detokenize(
                vars(train_data[i])["text"]
            )
            seq = discriminator.tokenizer.encode(seq)
            seq = torch.tensor([50256] + seq, device=device, dtype=torch.long)
            x.append(seq)
            y.append(class2idx[vars(train_data[i])["label"]])
        train_dataset = Dataset(x, y)

        test_x = []
        test_y = []
piero's avatar
piero committed
286
        for i in trange(len(test_data), ascii=True):
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
            seq = TreebankWordDetokenizer().detokenize(
                vars(test_data[i])["text"]
            )
            seq = discriminator.tokenizer.encode(seq)
            seq = torch.tensor([50256] + seq, device=device, dtype=torch.long)
            test_x.append(seq)
            test_y.append(class2idx[vars(test_data[i])["label"]])
        test_dataset = Dataset(test_x, test_y)

        discriminator_meta = {
            "class_size": len(idx2class),
            "embed_size": discriminator.embed_size,
            "pretrained_model": pretrained_model,
            "class_vocab": class2idx,
            "default_class": 2,
        }

piero's avatar
piero committed
304
    elif dataset == "clickbait":
305
306
307
308
309
310
        idx2class = ["non_clickbait", "clickbait"]
        class2idx = {c: i for i, c in enumerate(idx2class)}

        discriminator = Discriminator(
            class_size=len(idx2class),
            pretrained_model=pretrained_model,
w4nderlust's avatar
w4nderlust committed
311
312
            cached_mode=cached,
            device=device
313
314
315
316
317
318
319
320
        ).to(device)

        with open("datasets/clickbait/clickbait_train_prefix.txt") as f:
            data = []
            for i, line in enumerate(f):
                try:
                    data.append(eval(line))
                except:
piero's avatar
piero committed
321
                    print("Error evaluating line {}: {}".format(
322
323
324
325
326
                        i, line
                    ))
                    continue
        x = []
        y = []
piero's avatar
piero committed
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
        with open("datasets/clickbait/clickbait_train_prefix.txt") as f:
            for i, line in enumerate(tqdm(f, ascii=True)):
                try:
                    d = eval(line)
                    seq = discriminator.tokenizer.encode(d["text"])

                    if len(seq) < max_length_seq:
                        seq = torch.tensor(
                            [50256] + seq, device=device, dtype=torch.long
                        )
                    else:
                        print("Line {} is longer than maximum length {}".format(
                            i, max_length_seq
                        ))
                        continue
                    x.append(seq)
                    y.append(d["label"])
                except:
                    print("Error evaluating / tokenizing"
                          " line {}, skipping it".format(i))
                    pass
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

        full_dataset = Dataset(x, y)
        train_size = int(0.9 * len(full_dataset))
        test_size = len(full_dataset) - train_size
        train_dataset, test_dataset = torch.utils.data.random_split(
            full_dataset, [train_size, test_size]
        )

        discriminator_meta = {
            "class_size": len(idx2class),
            "embed_size": discriminator.embed_size,
            "pretrained_model": pretrained_model,
            "class_vocab": class2idx,
            "default_class": 1,
        }

piero's avatar
piero committed
364
    elif dataset == "toxic":
365
366
367
368
369
370
        idx2class = ["non_toxic", "toxic"]
        class2idx = {c: i for i, c in enumerate(idx2class)}

        discriminator = Discriminator(
            class_size=len(idx2class),
            pretrained_model=pretrained_model,
w4nderlust's avatar
w4nderlust committed
371
372
            cached_mode=cached,
            device=device
373
374
        ).to(device)

piero's avatar
piero committed
375
376
        x = []
        y = []
377
        with open("datasets/toxic/toxic_train.txt") as f:
piero's avatar
piero committed
378
            for i, line in enumerate(tqdm(f, ascii=True)):
379
                try:
piero's avatar
piero committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
                    d = eval(line)
                    seq = discriminator.tokenizer.encode(d["text"])

                    if len(seq) < max_length_seq:
                        seq = torch.tensor(
                            [50256] + seq, device=device, dtype=torch.long
                        )
                    else:
                        print("Line {} is longer than maximum length {}".format(
                            i, max_length_seq
                        ))
                        continue
                    x.append(seq)
                    y.append(int(np.sum(d["label"]) > 0))
394
                except:
piero's avatar
piero committed
395
396
397
                    print("Error evaluating / tokenizing"
                          " line {}, skipping it".format(i))
                    pass
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

        full_dataset = Dataset(x, y)
        train_size = int(0.9 * len(full_dataset))
        test_size = len(full_dataset) - train_size
        train_dataset, test_dataset = torch.utils.data.random_split(
            full_dataset, [train_size, test_size]
        )

        discriminator_meta = {
            "class_size": len(idx2class),
            "embed_size": discriminator.embed_size,
            "pretrained_model": pretrained_model,
            "class_vocab": class2idx,
            "default_class": 0,
        }

piero's avatar
piero committed
414
    else:  # if dataset == "generic":
415
416
417
418
        # This assumes the input dataset is a TSV with the following structure:
        # class \t text

        if dataset_fp is None:
piero's avatar
piero committed
419
420
            raise ValueError("When generic dataset is selected, "
                             "dataset_fp needs to be specified aswell.")
421
422
423

        classes = set()
        with open(dataset_fp) as f:
piero's avatar
piero committed
424
425
            csv_reader = csv.reader(f, delimiter="\t")
            for row in tqdm(csv_reader, ascii=True):
426
427
                if row:
                    classes.add(row[0])
428
429
430
431
432
433
434

        idx2class = sorted(classes)
        class2idx = {c: i for i, c in enumerate(idx2class)}

        discriminator = Discriminator(
            class_size=len(idx2class),
            pretrained_model=pretrained_model,
w4nderlust's avatar
w4nderlust committed
435
436
            cached_mode=cached,
            device=device
437
438
439
440
441
        ).to(device)

        x = []
        y = []
        with open(dataset_fp) as f:
piero's avatar
piero committed
442
443
            csv_reader = csv.reader(f, delimiter="\t")
            for i, row in enumerate(tqdm(csv_reader, ascii=True)):
444
445
446
447
448
449
450
451
452
453
454
455
456
457
                if row:
                    label = row[0]
                    text = row[1]

                    try:
                        seq = discriminator.tokenizer.encode(text)
                        if (len(seq) < max_length_seq):
                            seq = torch.tensor(
                                [50256] + seq,
                                device=device,
                                dtype=torch.long
                            )

                        else:
piero's avatar
piero committed
458
459
460
461
                            print(
                                "Line {} is longer than maximum length {}".format(
                                    i, max_length_seq
                                ))
462
463
464
465
466
467
468
469
                            continue

                        x.append(seq)
                        y.append(class2idx[label])

                    except:
                        print("Error tokenizing line {}, skipping it".format(i))
                        pass
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

        full_dataset = Dataset(x, y)
        train_size = int(0.9 * len(full_dataset))
        test_size = len(full_dataset) - train_size
        train_dataset, test_dataset = torch.utils.data.random_split(
            full_dataset,
            [train_size, test_size]
        )

        discriminator_meta = {
            "class_size": len(idx2class),
            "embed_size": discriminator.embed_size,
            "pretrained_model": pretrained_model,
            "class_vocab": class2idx,
            "default_class": 0,
        }

    end = time.time()
piero's avatar
piero committed
488
    print("Preprocessed {} data points".format(
489
490
491
492
493
        len(train_dataset) + len(test_dataset))
    )
    print("Data preprocessing took: {:.3f}s".format(end - start))

    if cached:
piero's avatar
piero committed
494
495
        print("Building representation cache...")

496
497
498
        start = time.time()

        train_loader = get_cached_data_loader(
w4nderlust's avatar
w4nderlust committed
499
500
            train_dataset, batch_size, discriminator,
            shuffle=True, device=device
501
502
503
        )

        test_loader = get_cached_data_loader(
w4nderlust's avatar
w4nderlust committed
504
            test_dataset, batch_size, discriminator, device=device
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
        )

        end = time.time()
        print("Building representation cache took: {:.3f}s".format(end - start))

    else:
        train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                                   batch_size=batch_size,
                                                   shuffle=True,
                                                   collate_fn=collate_fn)
        test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                                  batch_size=batch_size,
                                                  collate_fn=collate_fn)

    if save_model:
        with open("{}_classifier_head_meta.json".format(dataset),
                  "w") as meta_file:
            json.dump(discriminator_meta, meta_file)

    optimizer = optim.Adam(discriminator.parameters(), lr=0.0001)

    for epoch in range(epochs):
        start = time.time()
piero's avatar
piero committed
528
        print("\nEpoch", epoch + 1)
529
530
531
532
533
534

        train_epoch(
            discriminator=discriminator,
            data_loader=train_loader,
            optimizer=optimizer,
            epoch=epoch,
w4nderlust's avatar
w4nderlust committed
535
536
            log_interval=log_interval,
            device=device
537
538
539
        )
        evaluate_performance(
            data_loader=test_loader,
w4nderlust's avatar
w4nderlust committed
540
541
            discriminator=discriminator,
            device=device
542
543
544
545
546
547
        )

        end = time.time()
        print("Epoch took: {:.3f}s".format(end - start))

        print("\nExample prediction")
w4nderlust's avatar
w4nderlust committed
548
549
        predict(example_sentence, discriminator, idx2class,
                cached=cached, device=device)
550
551
552
553

        if save_model:
            # torch.save(discriminator.state_dict(),
            #           "{}_discriminator_{}.pt".format(
554
            #               args.dataset, epoch + 1
555
556
            #               ))
            torch.save(discriminator.get_classifier().state_dict(),
557
558
                       "{}_classifier_head_epoch_{}.pt".format(dataset,
                                                               epoch + 1))
559
560


piero's avatar
piero committed
561
if __name__ == "__main__":
562
    parser = argparse.ArgumentParser(
piero's avatar
piero committed
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
        description="Train a discriminator on top of GPT-2 representations")
    parser.add_argument("--dataset", type=str, default="SST",
                        choices=("SST", "clickbait", "toxic", "generic"),
                        help="dataset to train the discriminator on."
                             "In case of generic, the dataset is expected"
                             "to be a TSBV file with structure: class \\t text")
    parser.add_argument("--dataset_fp", type=str, default="",
                        help="File path of the dataset to use. "
                             "Needed only in case of generic datadset")
    parser.add_argument("--pretrained_model", type=str, default="gpt2-medium",
                        help="Pretrained model to use as encoder")
    parser.add_argument("--epochs", type=int, default=10, metavar="N",
                        help="Number of training epochs")
    parser.add_argument("--batch_size", type=int, default=64, metavar="N",
                        help="input batch size for training (default: 64)")
    parser.add_argument("--log_interval", type=int, default=10, metavar="N",
                        help="how many batches to wait before logging training status")
    parser.add_argument("--save_model", action="store_true",
                        help="whether to save the model")
    parser.add_argument("--cached", action="store_true",
                        help="whether to cache the input representations")
    parser.add_argument("--no_cuda", action="store_true",
                        help="use to turn off cuda")
586
587
588
    args = parser.parse_args()

    train_discriminator(**(vars(args)))