lm_seqs_dataset.py 5.33 KB
Newer Older
VictorSanh's avatar
VictorSanh committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc.
VictorSanh's avatar
VictorSanh committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
VictorSanh's avatar
VictorSanh committed
15
""" Dataset to distilled models
thomwolf's avatar
thomwolf committed
16
    adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
VictorSanh's avatar
VictorSanh committed
17
"""
VictorSanh's avatar
VictorSanh committed
18
import torch
VictorSanh's avatar
VictorSanh committed
19
from torch.utils.data import Dataset
VictorSanh's avatar
VictorSanh committed
20

VictorSanh's avatar
VictorSanh committed
21
import numpy as np
VictorSanh's avatar
VictorSanh committed
22
23
from utils import logger

VictorSanh's avatar
VictorSanh committed
24
25
26
27
28
29
30
31
32
33
34
class LmSeqsDataset(Dataset):
    """Custom Dataset wrapping language modeling sequences.

    Each sample will be retrieved by indexing the list of token_ids and their corresponding lengths.

    Input:
    ------
        params: `NameSpace` parameters
        data: `List[np.array[int]]
    """

VictorSanh's avatar
VictorSanh committed
35
36
37
38
39
40
    def __init__(self,
                 params,
                 data):
        self.params = params

        self.token_ids = np.array(data)
VictorSanh's avatar
VictorSanh committed
41
        self.lengths = np.array([len(t) for t in data])
VictorSanh's avatar
VictorSanh committed
42
43
44
45
46
47
48

        self.check()
        self.remove_long_sequences()
        self.remove_empty_sequences()
        self.check()
        self.print_statistics()

VictorSanh's avatar
VictorSanh committed
49
50
51
    def __getitem__(self, index):
        return (self.token_ids[index], self.lengths[index])

VictorSanh's avatar
VictorSanh committed
52
53
54
55
56
57
58
59
    def __len__(self):
        return len(self.lengths)

    def check(self):
        """
        Some sanity checks
        """
        assert len(self.token_ids) == len(self.lengths)
VictorSanh's avatar
VictorSanh committed
60
        assert all(self.lengths[i] == len(self.token_ids[i]) for i in range(len(self.lengths))) 
VictorSanh's avatar
VictorSanh committed
61
62
63

    def remove_long_sequences(self):
        """
VictorSanh's avatar
VictorSanh committed
64
        Sequences that are too long are splitted by chunk of max_model_input_size.
VictorSanh's avatar
VictorSanh committed
65
        """
VictorSanh's avatar
VictorSanh committed
66
67
        max_len = self.params.max_model_input_size
        indices = self.lengths > max_len
VictorSanh's avatar
VictorSanh committed
68
69
70
71
72
73
74
        logger.info(f'Splitting {sum(indices)} too long sequences.')

        def divide_chunks(l, n):
            return [l[i:i + n] for i in range(0, len(l), n)]

        new_tok_ids = []
        new_lengths = []
VictorSanh's avatar
VictorSanh committed
75
76
77
78
        if self.params.mlm:
            cls_id, sep_id = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token']
        else:
            cls_id, sep_id = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token']
VictorSanh's avatar
VictorSanh committed
79
80

        for seq_, len_ in zip(self.token_ids, self.lengths):
VictorSanh's avatar
VictorSanh committed
81
            assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
VictorSanh's avatar
VictorSanh committed
82
83
84
85
86
87
88
89
90
            if len_ <= max_len:
                new_tok_ids.append(seq_)
                new_lengths.append(len_)
            else:
                sub_seqs = []
                for sub_s in divide_chunks(seq_, max_len-2):
                    if sub_s[0] != cls_id:
                        sub_s = np.insert(sub_s, 0, cls_id)
                    if sub_s[-1] != sep_id:
VictorSanh's avatar
VictorSanh committed
91
                        sub_s = np.insert(sub_s, len(sub_s), sep_id)
VictorSanh's avatar
VictorSanh committed
92
                    assert len(sub_s) <= max_len
VictorSanh's avatar
VictorSanh committed
93
                    assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
VictorSanh's avatar
VictorSanh committed
94
95
96
97
98
99
100
101
102
103
104
105
106
                    sub_seqs.append(sub_s)

                new_tok_ids.extend(sub_seqs)
                new_lengths.extend([len(l) for l in sub_seqs])

        self.token_ids = np.array(new_tok_ids)
        self.lengths = np.array(new_lengths)

    def remove_empty_sequences(self):
        """
        Too short sequences are simply removed. This could be tunedd.
        """
        init_size = len(self)
107
        indices = self.lengths > 11
VictorSanh's avatar
VictorSanh committed
108
109
110
        self.token_ids = self.token_ids[indices]
        self.lengths = self.lengths[indices]
        new_size = len(self)
111
        logger.info(f'Remove {init_size - new_size} too short (<=11 tokens) sequences.')
VictorSanh's avatar
VictorSanh committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

    def print_statistics(self):
        """
        Print some statistics on the corpus. Only the master process.
        """
        if not self.params.is_master:
            return
        logger.info(f'{len(self)} sequences')
        # data_len = sum(self.lengths)
        # nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
        # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')

        # unk_idx = self.params.special_tok_ids['unk_token']
        # nb_unkown = sum([(t==unk_idx).sum() for t in self.token_ids])
        # logger.info(f'{nb_unkown} unknown tokens (covering {100*nb_unkown/data_len:.2f}% of the data)')

    def batch_sequences(self,
VictorSanh's avatar
VictorSanh committed
129
                        batch):
VictorSanh's avatar
VictorSanh committed
130
131
132
        """
        Do the padding and transform into torch.tensor.
        """
VictorSanh's avatar
VictorSanh committed
133
134
        token_ids = [t[0] for t in batch]
        lengths = [t[1] for t in batch]
VictorSanh's avatar
VictorSanh committed
135
136
137
138
139
140
        assert len(token_ids) == len(lengths)

        # Max for paddings
        max_seq_len_ = max(lengths)

        # Pad token ids
VictorSanh's avatar
VictorSanh committed
141
142
143
144
        if self.params.mlm:
            pad_idx = self.params.special_tok_ids['pad_token']
        else:
            pad_idx = self.params.special_tok_ids['unk_token']
VictorSanh's avatar
VictorSanh committed
145
146
147
148
        tk_ = [list(t.astype(int)) + [pad_idx]*(max_seq_len_-len(t)) for t in token_ids]
        assert len(tk_) == len(token_ids)
        assert all(len(t) == max_seq_len_ for t in tk_)

VictorSanh's avatar
VictorSanh committed
149
150
        tk_t = torch.tensor(tk_)      # (bs, max_seq_len_)
        lg_t = torch.tensor(lengths)  # (bs)
VictorSanh's avatar
VictorSanh committed
151
        return tk_t, lg_t