"sgl-router/git@developer.sourcefind.cn:zhaoyu6/sglang.git" did not exist on "53c2934dcef8794449b7f270ad162f3fdabc01e3"
run_clm.py 28.9 KB
Newer Older
Matt's avatar
Matt committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
17
Fine-tuning the library models for causal language modeling (GPT-2, GPT-Neo...)
Matt's avatar
Matt committed
18
19
20
on a text file or a dataset without using HuggingFace Trainer.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
21
https://huggingface.co/models?filter=text-generation
Matt's avatar
Matt committed
22
"""
23
# You can also adapt this script on your own clm task. Pointers for this are left as comments.
Matt's avatar
Matt committed
24

Matt's avatar
Matt committed
25
26
import json

Matt's avatar
Matt committed
27
28
29
30
31
32
# region Imports
import logging
import math
import os
import random
import sys
33
import warnings
Matt's avatar
Matt committed
34
from dataclasses import dataclass, field
35
from itertools import chain
Matt's avatar
Matt committed
36
37
38
39
40
41
from pathlib import Path
from typing import Optional

import datasets
import tensorflow as tf
from datasets import load_dataset
42
from sklearn.model_selection import train_test_split
Matt's avatar
Matt committed
43
44
45
46
47
48

import transformers
from transformers import (
    CONFIG_MAPPING,
    CONFIG_NAME,
    TF2_WEIGHTS_NAME,
49
    TF_MODEL_FOR_CAUSAL_LM_MAPPING,
Matt's avatar
Matt committed
50
51
52
    AutoConfig,
    AutoTokenizer,
    HfArgumentParser,
Matt's avatar
Matt committed
53
    PushToHubCallback,
Matt's avatar
Matt committed
54
55
56
57
58
    TFAutoModelForCausalLM,
    TFTrainingArguments,
    create_optimizer,
    set_seed,
)
59
from transformers.utils import send_example_telemetry
Matt's avatar
Matt committed
60
61
62
63
from transformers.utils.versions import require_version


logger = logging.getLogger(__name__)
64
65
require_version("datasets>=1.8.0", "To fix: pip install -r examples/tensorflow/language-modeling/requirements.txt")
MODEL_CONFIG_CLASSES = list(TF_MODEL_FOR_CAUSAL_LM_MAPPING.keys())
Matt's avatar
Matt committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
# endregion


# region Command-line arguments
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
80
            "help": (
81
                "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
Sylvain Gugger's avatar
Sylvain Gugger committed
82
            )
Matt's avatar
Matt committed
83
84
85
86
87
88
89
90
91
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
92
93
94
95
            "help": (
                "Override some existing default config settings when a model is trained from scratch. Example: "
                "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
            )
Matt's avatar
Matt committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        },
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
116
117
    token: str = field(
        default=None,
Matt's avatar
Matt committed
118
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
119
            "help": (
120
121
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
122
            )
Matt's avatar
Matt committed
123
124
        },
    )
125
126
127
    use_auth_token: bool = field(
        default=None,
        metadata={
128
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
129
130
        },
    )
131
132
133
134
135
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option"
136
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
137
138
139
140
                "execute code present on the Hub on your local machine."
            )
        },
    )
Matt's avatar
Matt committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

    def __post_init__(self):
        if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
            raise ValueError(
                "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
            )


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
175
    block_size: Optional[int] = field(
Matt's avatar
Matt committed
176
177
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
178
179
180
181
182
            "help": (
                "Optional input sequence length after tokenization. "
                "The training dataset will be truncated in block of this size for training. "
                "Default to the model max input length for single sentence inputs (take into account special tokens)."
            )
Matt's avatar
Matt committed
183
184
185
186
187
188
189
190
191
192
193
194
195
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
196
197
198
199
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
Matt's avatar
Matt committed
200
201
202
203
204
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
205
206
207
208
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
Matt's avatar
Matt committed
209
210
        },
    )
211
    keep_linebreaks: bool = field(
212
        default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
213
    )
Matt's avatar
Matt committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."


# endregion


def main():
    # region Argument Parsing
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

240
    if model_args.use_auth_token is not None:
241
242
243
244
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
            FutureWarning,
        )
245
246
247
248
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

249
250
251
252
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_clm", model_args, data_args, framework="tensorflow")

Matt's avatar
Matt committed
253
254
255
256
257
258
259
260
261
262
263
264
    # Sanity checks
    if data_args.dataset_name is None and data_args.train_file is None and data_args.validation_file is None:
        raise ValueError("Need either a dataset name or a training/validation file.")
    else:
        if data_args.train_file is not None:
            extension = data_args.train_file.split(".")[-1]
            assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, json or txt file."
        if data_args.validation_file is not None:
            extension = data_args.validation_file.split(".")[-1]
            assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, json or txt file."

    if training_args.output_dir is not None:
265
        training_args.output_dir = Path(training_args.output_dir)
Matt's avatar
Matt committed
266
267
268
269
270
271
272
        os.makedirs(training_args.output_dir, exist_ok=True)
    # endregion

    # region Checkpoints
    # Detecting last checkpoint.
    checkpoint = None
    if len(os.listdir(training_args.output_dir)) > 0 and not training_args.overwrite_output_dir:
273
274
        config_path = training_args.output_dir / CONFIG_NAME
        weights_path = training_args.output_dir / TF2_WEIGHTS_NAME
Matt's avatar
Matt committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        if config_path.is_file() and weights_path.is_file():
            checkpoint = training_args.output_dir
            logger.info(
                f"Checkpoint detected, resuming training from checkpoint in {training_args.output_dir}. To avoid this"
                " behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )
        else:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to continue regardless."
            )

    # endregion

    # region Setup logging
    # accelerator.is_local_main_process is only True for one process per machine.
    logger.setLevel(logging.INFO)
    datasets.utils.logging.set_verbosity_warning()
    transformers.utils.logging.set_verbosity_info()
    # endregion

    # If passed along, set the training seed now.
    if training_args.seed is not None:
        set_seed(training_args.seed)

    # region Load datasets
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
312
313
314
        raw_datasets = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
Matt's avatar
Matt committed
315
            cache_dir=model_args.cache_dir,
316
            token=model_args.token,
317
        )
Matt's avatar
Matt committed
318
319
320
321
322
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
Matt's avatar
Matt committed
323
                cache_dir=model_args.cache_dir,
324
                token=model_args.token,
Matt's avatar
Matt committed
325
326
327
328
329
            )
            raw_datasets["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
Matt's avatar
Matt committed
330
                cache_dir=model_args.cache_dir,
331
                token=model_args.token,
Matt's avatar
Matt committed
332
333
334
            )
    else:
        data_files = {}
335
        dataset_args = {}
Matt's avatar
Matt committed
336
337
338
339
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
Matt's avatar
Matt committed
340
341
342
343
344
        extension = (
            data_args.train_file.split(".")[-1]
            if data_args.train_file is not None
            else data_args.validation_file.split(".")[-1]
        )
Matt's avatar
Matt committed
345
346
        if extension == "txt":
            extension = "text"
347
            dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
348
349
350
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
Matt's avatar
Matt committed
351
            cache_dir=model_args.cache_dir,
352
            token=model_args.token,
353
354
            **dataset_args,
        )
Matt's avatar
Matt committed
355
356
357
358
359
360
361
        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
362
                token=model_args.token,
Matt's avatar
Matt committed
363
364
365
366
367
368
369
                **dataset_args,
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
370
                token=model_args.token,
Matt's avatar
Matt committed
371
372
                **dataset_args,
            )
Matt's avatar
Matt committed
373
374
375
376
377
378
379
380
381
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.
    # endregion

    # region Load pretrained model and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    if model_args.config_name:
382
383
        config = AutoConfig.from_pretrained(
            model_args.config_name,
384
            token=model_args.token,
385
386
            trust_remote_code=model_args.trust_remote_code,
        )
Matt's avatar
Matt committed
387
    elif model_args.model_name_or_path:
388
        config = AutoConfig.from_pretrained(
389
            model_args.model_name_or_path, token=model_args.token, trust_remote_code=model_args.trust_remote_code
390
        )
Matt's avatar
Matt committed
391
392
393
394
395
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")

    if model_args.tokenizer_name:
396
        tokenizer = AutoTokenizer.from_pretrained(
397
            model_args.tokenizer_name, token=model_args.token, trust_remote_code=model_args.trust_remote_code
398
        )
Matt's avatar
Matt committed
399
    elif model_args.model_name_or_path:
400
        tokenizer = AutoTokenizer.from_pretrained(
401
            model_args.model_name_or_path, token=model_args.token, trust_remote_code=model_args.trust_remote_code
402
        )
Matt's avatar
Matt committed
403
404
    else:
        raise ValueError(
405
            "You are instantiating a new tokenizer from scratch. This is not supported by this script. "
Matt's avatar
Matt committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )
    # endregion

    # region Dataset preprocessing
    # First we tokenize all the texts.
    column_names = raw_datasets["train"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

    def tokenize_function(examples):
        return tokenizer(examples[text_column_name])

    tokenized_datasets = raw_datasets.map(
        tokenize_function,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        remove_columns=column_names,
        load_from_cache_file=not data_args.overwrite_cache,
        desc="Running tokenizer on dataset",
    )

427
428
    if data_args.block_size is None:
        block_size = tokenizer.model_max_length
429
        if block_size > config.max_position_embeddings:
430
431
            logger.warning(
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
432
                f"Using block_size={min(1024, config.max_position_embeddings)} instead. You can change that default value by passing --block_size xxx."
433
            )
434
            block_size = min(1024, config.max_position_embeddings)
435
436
437
    else:
        if data_args.block_size > tokenizer.model_max_length:
            logger.warning(
438
                f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model "
439
440
441
                f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
            )
        block_size = min(data_args.block_size, tokenizer.model_max_length)
Matt's avatar
Matt committed
442
443
444
445

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
    def group_texts(examples):
        # Concatenate all texts.
446
        concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
Matt's avatar
Matt committed
447
448
449
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
        # customize this part to your needs.
450
451
        if total_length >= block_size:
            total_length = (total_length // block_size) * block_size
Matt's avatar
Matt committed
452
453
454
455
456
457
458
459
460
461
462
463
464
        # Split by chunks of max_len.
        result = {
            k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result["labels"] = result["input_ids"].copy()
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
    # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
    # to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
465
    # https://huggingface.co/docs/datasets/process#map
Matt's avatar
Matt committed
466
467
468
469
470
471
472
473
474
475

    lm_datasets = tokenized_datasets.map(
        group_texts,
        batched=True,
        num_proc=data_args.preprocessing_num_workers,
        load_from_cache_file=not data_args.overwrite_cache,
        desc=f"Grouping texts in chunks of {block_size}",
    )

    train_dataset = lm_datasets["train"]
476
477
478
479
    if data_args.validation_file is not None:
        eval_dataset = lm_datasets["validation"]
    else:
        logger.info(
Sylvain Gugger's avatar
Sylvain Gugger committed
480
481
            f"Validation file not found: using {data_args.validation_split_percentage}% of the dataset as validation"
            " as provided in data_args"
482
483
        )
        train_indices, val_indices = train_test_split(
484
            list(range(len(train_dataset))), test_size=data_args.validation_split_percentage / 100
485
486
487
488
        )

        eval_dataset = train_dataset.select(val_indices)
        train_dataset = train_dataset.select(train_indices)
Matt's avatar
Matt committed
489
490

    if data_args.max_train_samples is not None:
491
492
        max_train_samples = min(len(train_dataset), data_args.max_train_samples)
        train_dataset = train_dataset.select(range(max_train_samples))
Matt's avatar
Matt committed
493
    if data_args.max_eval_samples is not None:
494
495
        max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
        eval_dataset = eval_dataset.select(range(max_eval_samples))
Matt's avatar
Matt committed
496
497

    # Log a few random samples from the training set:
Matt's avatar
Matt committed
498
    for index in random.sample(range(len(train_dataset)), min(3, len(train_dataset))):
Matt's avatar
Matt committed
499
500
501
502
503
504
        logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
    # endregion

    with training_args.strategy.scope():
        # region Prepare model
        if checkpoint is not None:
505
            model = TFAutoModelForCausalLM.from_pretrained(
506
                checkpoint, config=config, token=model_args.token, trust_remote_code=model_args.trust_remote_code
507
            )
Matt's avatar
Matt committed
508
        elif model_args.model_name_or_path:
509
            model = TFAutoModelForCausalLM.from_pretrained(
510
511
512
513
                model_args.model_name_or_path,
                config=config,
                token=model_args.token,
                trust_remote_code=model_args.trust_remote_code,
514
            )
Matt's avatar
Matt committed
515
516
        else:
            logger.info("Training new model from scratch")
517
518
519
            model = TFAutoModelForCausalLM.from_config(
                config, token=model_args.token, trust_remote_code=model_args.trust_remote_code
            )
Matt's avatar
Matt committed
520

521
522
        # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
        # on a small vocab and want a smaller embedding size, remove this test.
523
524
525
526
527
528
529
530
531
        embeddings = model.get_input_embeddings()

        # Matt: This is a temporary workaround as we transition our models to exclusively using Keras embeddings.
        #       As soon as the transition is complete, all embeddings should be keras.Embeddings layers, and
        #       the weights will always be in embeddings.embeddings.
        if hasattr(embeddings, "embeddings"):
            embedding_size = embeddings.embeddings.shape[0]
        else:
            embedding_size = embeddings.weight.shape[0]
532
533
        if len(tokenizer) > embedding_size:
            model.resize_token_embeddings(len(tokenizer))
Matt's avatar
Matt committed
534
535
536
537
538
539
        # endregion

        # region TF Dataset preparation
        num_replicas = training_args.strategy.num_replicas_in_sync
        options = tf.data.Options()
        options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF
Joao Gante's avatar
Joao Gante committed
540

Matt's avatar
Matt committed
541
542
543
544
545
546
547
548
549
550
551
        # model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in
        # training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also
        # use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names
        # yourself if you use this method, whereas they are automatically inferred from the model input names when
        # using model.prepare_tf_dataset()
        # For more info see the docs:
        # https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset
        # https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset

        tf_train_dataset = model.prepare_tf_dataset(
            train_dataset,
Joao Gante's avatar
Joao Gante committed
552
553
554
555
            shuffle=True,
            batch_size=num_replicas * training_args.per_device_train_batch_size,
        ).with_options(options)

Matt's avatar
Matt committed
556
557
        tf_eval_dataset = model.prepare_tf_dataset(
            eval_dataset,
Joao Gante's avatar
Joao Gante committed
558
            shuffle=False,
Matt's avatar
Matt committed
559
            batch_size=num_replicas * training_args.per_device_eval_batch_size,
Joao Gante's avatar
Joao Gante committed
560
561
            drop_remainder=True,
        ).with_options(options)
Matt's avatar
Matt committed
562
563
564
        # endregion

        # region Optimizer and loss
Matt's avatar
Matt committed
565
566
567
568
569
570
571
572
        num_train_steps = len(tf_train_dataset) * int(training_args.num_train_epochs)
        if training_args.warmup_steps > 0:
            num_warmup_steps = training_args.warmup_steps
        elif training_args.warmup_ratio > 0:
            num_warmup_steps = int(num_train_steps * training_args.warmup_ratio)
        else:
            num_warmup_steps = 0

Matt's avatar
Matt committed
573
574
575
        # Bias and layernorm weights are automatically excluded from the decay
        optimizer, lr_schedule = create_optimizer(
            init_lr=training_args.learning_rate,
Matt's avatar
Matt committed
576
577
            num_train_steps=num_train_steps,
            num_warmup_steps=num_warmup_steps,
Matt's avatar
Matt committed
578
579
580
581
            adam_beta1=training_args.adam_beta1,
            adam_beta2=training_args.adam_beta2,
            adam_epsilon=training_args.adam_epsilon,
            weight_decay_rate=training_args.weight_decay,
Matt's avatar
Matt committed
582
            adam_global_clipnorm=training_args.max_grad_norm,
Matt's avatar
Matt committed
583
584
        )

585
586
        # Transformers models compute the right loss for their task by default when labels are passed, and will
        # use this for training unless you specify your own loss function in compile().
Matt's avatar
Matt committed
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
        model.compile(optimizer=optimizer, jit_compile=training_args.xla)
        # endregion

        # region Preparing push_to_hub and model card
        push_to_hub_model_id = training_args.push_to_hub_model_id
        model_name = model_args.model_name_or_path.split("/")[-1]
        if not push_to_hub_model_id:
            if data_args.dataset_name is not None:
                push_to_hub_model_id = f"{model_name}-finetuned-{data_args.dataset_name}"
            else:
                push_to_hub_model_id = f"{model_name}-finetuned-clm"

        model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"}
        if data_args.dataset_name is not None:
            model_card_kwargs["dataset_tags"] = data_args.dataset_name
            if data_args.dataset_config_name is not None:
                model_card_kwargs["dataset_args"] = data_args.dataset_config_name
                model_card_kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
            else:
                model_card_kwargs["dataset"] = data_args.dataset_name

        if training_args.push_to_hub:
            callbacks = [
                PushToHubCallback(
                    output_dir=training_args.output_dir,
612
613
                    hub_model_id=push_to_hub_model_id,
                    hub_token=training_args.push_to_hub_token,
Matt's avatar
Matt committed
614
615
616
617
618
619
                    tokenizer=tokenizer,
                    **model_card_kwargs,
                )
            ]
        else:
            callbacks = []
Matt's avatar
Matt committed
620
621
622
623
624
625
626
627
628
        # endregion

        # region Training and validation
        logger.info("***** Running training *****")
        logger.info(f"  Num examples = {len(train_dataset)}")
        logger.info(f"  Num Epochs = {training_args.num_train_epochs}")
        logger.info(f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
        logger.info(f"  Total train batch size = {training_args.per_device_train_batch_size * num_replicas}")

Matt's avatar
Matt committed
629
630
631
632
        # For long training runs, you may wish to use the PushToHub() callback here to save intermediate checkpoints
        # to the Hugging Face Hub rather than just pushing the finished model.
        # See https://huggingface.co/docs/transformers/main_classes/keras_callbacks#transformers.PushToHubCallback

Matt's avatar
Matt committed
633
634
635
636
        history = model.fit(
            tf_train_dataset,
            validation_data=tf_eval_dataset,
            epochs=int(training_args.num_train_epochs),
Matt's avatar
Matt committed
637
            callbacks=callbacks,
Matt's avatar
Matt committed
638
        )
Matt's avatar
Matt committed
639
        train_loss = history.history["loss"][-1]
Matt's avatar
Matt committed
640
        try:
Matt's avatar
Matt committed
641
            train_perplexity = math.exp(train_loss)
Matt's avatar
Matt committed
642
643
        except OverflowError:
            train_perplexity = math.inf
Matt's avatar
Matt committed
644
645
646
        logger.info(f"  Final train loss: {train_loss:.3f}")
        logger.info(f"  Final train perplexity: {train_perplexity:.3f}")
        validation_loss = history.history["val_loss"][-1]
Matt's avatar
Matt committed
647
        try:
Matt's avatar
Matt committed
648
            validation_perplexity = math.exp(validation_loss)
Matt's avatar
Matt committed
649
650
        except OverflowError:
            validation_perplexity = math.inf
Matt's avatar
Matt committed
651
        logger.info(f"  Final validation loss: {validation_loss:.3f}")
Matt's avatar
Matt committed
652
653
654
        logger.info(f"  Final validation perplexity: {validation_perplexity:.3f}")

        if training_args.output_dir is not None:
Matt's avatar
Matt committed
655
            output_eval_file = os.path.join(training_args.output_dir, "all_results.json")
656
            results_dict = {}
Matt's avatar
Matt committed
657
658
659
660
661
662
663
            results_dict["train_loss"] = train_loss
            results_dict["train_perplexity"] = train_perplexity
            results_dict["eval_loss"] = validation_loss
            results_dict["eval_perplexity"] = validation_perplexity
            with open(output_eval_file, "w") as writer:
                writer.write(json.dumps(results_dict))
        # endregion
Matt's avatar
Matt committed
664

Matt's avatar
Matt committed
665
666
667
    if training_args.output_dir is not None and not training_args.push_to_hub:
        # If we're not pushing to hub, at least save a local copy when we're done
        model.save_pretrained(training_args.output_dir)
Matt's avatar
Matt committed
668
669
670
671


if __name__ == "__main__":
    main()