test_modeling_idefics.py 22 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Idefics model. """

import unittest

19
20
21
22
23
24
25
26
27
from transformers import BitsAndBytesConfig, IdeficsConfig, is_torch_available, is_vision_available
from transformers.testing_utils import (
    TestCasePlus,
    require_bitsandbytes,
    require_torch,
    require_vision,
    slow,
    torch_device,
)
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from transformers.utils import cached_property

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import IdeficsForVisionText2Text, IdeficsModel, IdeficsProcessor
    from transformers.models.idefics.configuration_idefics import IdeficsPerceiverConfig, IdeficsVisionConfig
    from transformers.models.idefics.modeling_idefics import IDEFICS_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_0
else:
    is_torch_greater_or_equal_than_2_0 = False

if is_vision_available():
    from PIL import Image


class IdeficsModelTester:
    def __init__(
        self,
        parent,
        batch_size=1,
        seq_length=7,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        scope=None,
        modality_type_vocab_size=2,
        vision_embed_dim=32,
        vision_patch_size=2,
        vision_image_size=30,
        vision_num_attention_heads=4,
        vision_num_hidden_layers=5,
        vision_intermediate_size=37,
        perceiver_qk_layer_norms_perceiver=False,
        perceiver_resampler_depth=2,
        perceiver_resampler_head_dim=8,
        perceiver_resampler_n_heads=2,
        perceiver_resampler_n_latents=16,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.scope = scope
        self.modality_type_vocab_size = modality_type_vocab_size

        self.vision_embed_dim = vision_embed_dim
        self.vision_patch_size = vision_patch_size
        self.vision_image_size = vision_image_size
        self.vision_num_attention_heads = vision_num_attention_heads
        self.vision_num_hidden_layers = vision_num_hidden_layers
        self.vision_intermediate_size = vision_intermediate_size

        self.vision_config = IdeficsVisionConfig(
            embed_dim=self.vision_embed_dim,
            patch_size=self.vision_patch_size,
            image_size=self.vision_image_size,
            num_attention_heads=self.vision_num_attention_heads,
            num_hidden_layers=self.vision_num_hidden_layers,
            intermediate_size=self.vision_intermediate_size,
        )

        self.perceiver_qk_layer_norms_perceiver = perceiver_qk_layer_norms_perceiver
        self.perceiver_resampler_depth = perceiver_resampler_depth
        self.perceiver_resampler_head_dim = perceiver_resampler_head_dim
        self.perceiver_resampler_n_heads = perceiver_resampler_n_heads
        self.perceiver_resampler_n_latents = perceiver_resampler_n_latents

        self.perceiver_config = IdeficsPerceiverConfig(
            qk_layer_norms_perceiver=self.perceiver_qk_layer_norms_perceiver,
            resampler_depth=self.perceiver_resampler_depth,
            resampler_head_dim=self.perceiver_resampler_head_dim,
            resampler_n_heads=self.perceiver_resampler_n_heads,
            resampler_n_latents=self.perceiver_resampler_n_latents,
        )

        # we set the expected sequence length (which is used in several tests)
        # this is equal to the seq length of the text tokens + number of image patches + 1 for the CLS token
        self.expected_seq_len = self.seq_length + (self.image_size // self.patch_size) ** 2 + 1

149
    def prepare_config_and_inputs(self, num_images=1, interpolate_pos_encoding=False, image_expansion=0):
150
151
152
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        pixel_values = floats_tensor(
153
154
155
156
157
158
159
            [
                self.batch_size,
                num_images,
                self.num_channels,
                self.image_size + image_expansion,
                self.image_size + image_expansion,
            ]
160
161
162
163
164
165
166
167
        )
        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        image_attention_mask = random_attention_mask([self.batch_size, self.seq_length, num_images])

        config = self.get_config()
168
        return (config, input_ids, input_mask, pixel_values, image_attention_mask, interpolate_pos_encoding)
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

    def get_config(self):
        return IdeficsConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
            num_labels=self.num_labels,
            modality_type_vocab_size=self.modality_type_vocab_size,
            vision_config=self.vision_config,
        )

    def create_and_check_model(
        self,
        config,
        input_ids,
        input_mask,
        pixel_values,
        image_attention_mask,
199
        interpolate_pos_encoding,
200
201
202
203
204
    ):
        model = IdeficsModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(
205
206
207
208
209
            input_ids,
            attention_mask=input_mask,
            pixel_values=pixel_values,
            image_attention_mask=image_attention_mask,
            interpolate_pos_encoding=interpolate_pos_encoding,
210
211
212
213
214
        )
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, input_ids.shape[1], self.hidden_size)
        )

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    def create_and_check_model_gen(
        self,
        config,
        input_ids,
        input_mask,
        pixel_values,
        image_attention_mask,
        interpolate_pos_encoding,
    ):
        model = IdeficsForVisionText2Text(config)
        model.to(torch_device)
        model.eval()
        model.generate(
            input_ids,
            attention_mask=input_mask,
            pixel_values=pixel_values,
            image_attention_mask=image_attention_mask,
            interpolate_pos_encoding=interpolate_pos_encoding,
            max_length=self.seq_length + 2,
        )

236
237
238
239
240
241
242
243
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            input_mask,
            pixel_values,
            image_attention_mask,
244
            interpolate_pos_encoding,
245
246
247
248
249
250
        ) = config_and_inputs
        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "pixel_values": pixel_values,
            "image_attention_mask": image_attention_mask,
251
            "interpolate_pos_encoding": interpolate_pos_encoding,
252
253
254
255
256
257
258
259
260
261
262
        }
        return config, inputs_dict

    def prepare_pixel_values(self):
        return floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])


@unittest.skipIf(not is_torch_greater_or_equal_than_2_0, reason="pytorch 2.0 or higher is required")
@require_torch
class IdeficsModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (IdeficsModel, IdeficsForVisionText2Text) if is_torch_available() else ()
263
    pipeline_model_mapping = {"feature-extraction": IdeficsModel} if is_torch_available() else {}
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
    test_pruning = False
    test_headmasking = False
    test_torchscript = False

    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
        # XXX: IdeficsForVisionText2TextTest has no MODEL_FOR group yet, but it should be the same
        # as MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, so for now manually changing to do the right thing
        # as super won't do it
        if return_labels:
            inputs_dict["labels"] = torch.zeros(
                (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
            )

        return inputs_dict

    def test_model_outputs_equivalence(self):
        try:
            orig = self.all_model_classes
            # IdeficsModel.forward doesn't have labels input arg - only IdeficsForVisionText2Text does
            self.all_model_classes = (IdeficsForVisionText2Text,) if is_torch_available() else ()
            super().test_model_outputs_equivalence()
        finally:
            self.all_model_classes = orig

    def setUp(self):
        self.model_tester = IdeficsModelTester(self)
        self.config_tester = ConfigTester(self, config_class=IdeficsConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

296
297
298
299
    def test_model_single_image(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(
            num_images=1, interpolate_pos_encoding=False, image_expansion=0
        )
300
301
        self.model_tester.create_and_check_model(*config_and_inputs)

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
    def test_model_multiple_images(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(
            num_images=2, interpolate_pos_encoding=False, image_expansion=0
        )
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_model_with_image_pos_embeddings_interpolation_single_image(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(
            num_images=1, interpolate_pos_encoding=True, image_expansion=2
        )
        self.model_tester.create_and_check_model(*config_and_inputs)
        config_and_inputs = self.model_tester.prepare_config_and_inputs(
            num_images=1, interpolate_pos_encoding=True, image_expansion=0
        )
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_model_with_image_pos_embeddings_interpolation_multiple_images(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(
            num_images=2, interpolate_pos_encoding=True, image_expansion=2
        )
        self.model_tester.create_and_check_model(*config_and_inputs)
        config_and_inputs = self.model_tester.prepare_config_and_inputs(
            num_images=2, interpolate_pos_encoding=True, image_expansion=0
        )
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_generate_with_image_pos_embeddings_interpolation_single_image(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(
            num_images=1, interpolate_pos_encoding=True, image_expansion=2
        )
        self.model_tester.create_and_check_model_gen(*config_and_inputs)

    def test_generate_with_image_pos_embeddings_interpolation_multiple_images(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(
            num_images=2, interpolate_pos_encoding=True, image_expansion=2
        )
        self.model_tester.create_and_check_model_gen(*config_and_inputs)

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
    def test_training(self):
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
            # IdeficsModel does not support training, users should use
            # IdeficsForVisionText2Text for this purpose
            if model_class == IdeficsModel:
                return

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
            # IdeficsModel does not support training, users should use
            # IdeficsForVisionText2Text for this purpose
            if model_class == IdeficsModel:
                return

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.use_cache = False
            config.return_dict = True

            model = model_class(config)
            model.to(torch_device)
            model.gradient_checkpointing_enable()
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    @unittest.skip(reason="""IDEFICS does not support retaining the gradients of the hidden states and attention""")
    def test_retain_grad_hidden_states_attentions(self):
        return

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions

            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions
            # IDEFICS does not support outputting attention score becuase it uses SDPA under the hood
            self.assertTrue(attentions[0] is None)
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            self.assertEqual(out_len + 1, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            # IDEFICS does not support outputting attention score becuase it uses SDPA under the hood
            self.assertTrue(self_attentions[0] is None)

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states

            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)

            seq_length = self.model_tester.seq_length

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    @slow
    def test_model_from_pretrained(self):
        for model_name in IDEFICS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = IdeficsModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


@unittest.skipIf(not is_torch_greater_or_equal_than_2_0, reason="pytorch 2.0 or higher is required")
@require_torch
class IdeficsForVisionText2TextTest(IdeficsModelTest, unittest.TestCase):
    all_model_classes = (IdeficsForVisionText2Text,) if is_torch_available() else ()

    def setUp(self):
        self.model_tester = IdeficsModelTester(
482
483
            self,
            modality_type_vocab_size=3,
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
        )
        self.config_tester = ConfigTester(self, config_class=IdeficsConfig, hidden_size=37)

    @unittest.skip("We only test the model that takes in multiple images")
    def test_model(self):
        pass

    @unittest.skip("We only test the model that takes in multiple images")
    def test_for_token_classification(self):
        pass

    @unittest.skip(reason="""IDEFICS does not support retaining the gradients of the hidden states and attention""")
    def test_retain_grad_hidden_states_attentions(self):
        pass


@unittest.skipIf(not is_torch_greater_or_equal_than_2_0, reason="pytorch 2.0 or higher is required")
@require_torch
@require_vision
class IdeficsModelIntegrationTest(TestCasePlus):
    @cached_property
    def default_processor(self):
Arthur's avatar
Arthur committed
506
507
508
509
510
        return (
            IdeficsProcessor.from_pretrained("HuggingFaceM4/idefics-9b", revision="refs/pr/11")
            if is_vision_available()
            else None
        )
511

512
    @require_bitsandbytes
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
    @slow
    def test_inference_natural_language_visual_reasoning(self):
        cat_image_path = self.tests_dir / "fixtures/tests_samples/COCO/000000039769.png"
        cats_image_obj = Image.open(cat_image_path)  # 2 cats
        dogs_image_url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_nlvr2/raw/main/image1.jpeg"

        prompts = [
            [
                "User:",
                dogs_image_url,
                "Describe this image.\nAssistant: An image of two dogs.\n",
                "User:",
                cats_image_obj,
                "Describe this image.\nAssistant:",
            ],
            [
                "User:",
                cats_image_obj,
                "Describe this image.\nAssistant: An image of two kittens.\n",
                "User:",
                dogs_image_url,
                "Describe this image.\nAssistant:",
            ],
        ]

538
539
540
541
542
543
544
545
        # the CI gpu is small so using quantization to fit
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype="float16",
        )
        model = IdeficsForVisionText2Text.from_pretrained(
            "HuggingFaceM4/idefics-9b", quantization_config=quantization_config, device_map="auto"
        )
546
547
548
549
550
551
552
553
554
555
556
557
        processor = self.default_processor
        inputs = processor(prompts, return_tensors="pt").to(torch_device)
        generated_ids = model.generate(**inputs, max_length=100)
        generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)

        # keep for debugging
        for i, t in enumerate(generated_text):
            t = bytes(t, "utf-8").decode("unicode_escape")
            print(f"{i}:\n{t}\n")

        self.assertIn("image of two cats", generated_text[0])
        self.assertIn("image of two dogs", generated_text[1])