check_table.py 10.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
16
"""
Utility that checks the big table in the file docs/source/en/index.md and potentially updates it.
17

Sylvain Gugger's avatar
Sylvain Gugger committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
Use from the root of the repo with:

```bash
python utils/check_inits.py
```

for a check that will error in case of inconsistencies (used by `make repo-consistency`).

To auto-fix issues run:

```bash
python utils/check_inits.py --fix_and_overwrite
```

which is used by `make fix-copies`.
"""
34
35
36
37
import argparse
import collections
import os
import re
Sylvain Gugger's avatar
Sylvain Gugger committed
38
from typing import List
39
40

from transformers.utils import direct_transformers_import
41
42
43
44
45


# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
TRANSFORMERS_PATH = "src/transformers"
46
PATH_TO_DOCS = "docs/source/en"
47
48
49
REPO_PATH = "."


Sylvain Gugger's avatar
Sylvain Gugger committed
50
def _find_text_in_file(filename: str, start_prompt: str, end_prompt: str) -> str:
51
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
52
53
54
55
56
57
58
59
60
    Find the text in filename between two prompts.

    Args:
        filename (`str`): The file to search into.
        start_prompt (`str`): A string to look for at the start of the content searched.
        end_prompt (`str`): A string that will mark the end of the content to look for.

    Returns:
        `str`: The content between the prompts.
61
62
63
    """
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
        lines = f.readlines()
Sylvain Gugger's avatar
Sylvain Gugger committed
64

65
66
67
68
69
70
    # Find the start prompt.
    start_index = 0
    while not lines[start_index].startswith(start_prompt):
        start_index += 1
    start_index += 1

Sylvain Gugger's avatar
Sylvain Gugger committed
71
    # Now go until the end prompt.
72
73
74
75
76
77
78
79
80
81
82
83
84
    end_index = start_index
    while not lines[end_index].startswith(end_prompt):
        end_index += 1
    end_index -= 1

    while len(lines[start_index]) <= 1:
        start_index += 1
    while len(lines[end_index]) <= 1:
        end_index -= 1
    end_index += 1
    return "".join(lines[start_index:end_index]), start_index, end_index, lines


Sylvain Gugger's avatar
Sylvain Gugger committed
85
# Regexes that match TF/Flax/PT model names. Add here suffixes that are used to identify models, separated by |
86
87
_re_tf_models = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
_re_flax_models = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
Sylvain Gugger's avatar
Sylvain Gugger committed
88
# Will match any TF or Flax model too so need to be in an else branch after the two previous regexes.
89
90
91
_re_pt_models = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")


92
# This is to make sure the transformers module imported is the one in the repo.
93
transformers_module = direct_transformers_import(TRANSFORMERS_PATH)
94
95


Sylvain Gugger's avatar
Sylvain Gugger committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
def camel_case_split(identifier: str) -> List[str]:
    """
    Split a camel-cased name into words.

    Args:
        identifier (`str`): The camel-cased name to parse.

    Returns:
        `List[str]`: The list of words in the identifier (as seprated by capital letters).

    Example:

    ```py
    >>> camel_case_split("CamelCasedClass")
    ["Camel", "Cased", "Class"]
    ```
    """
    # Regex thanks to https://stackoverflow.com/questions/29916065/how-to-do-camelcase-split-in-python
114
115
116
117
    matches = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", identifier)
    return [m.group(0) for m in matches]


Sylvain Gugger's avatar
Sylvain Gugger committed
118
119
120
121
122
123
124
125
126
127
128
def _center_text(text: str, width: int) -> str:
    """
    Utility that will add spaces on the left and right of a text to make it centered for a given width.

    Args:
        text (`str`): The text to center.
        width (`int`): The desired length of the result.

    Returns:
        `str`: A text of length `width` with the original `text` in the middle.
    """
129
130
131
132
133
134
    text_length = 2 if text == "✅" or text == "❌" else len(text)
    left_indent = (width - text_length) // 2
    right_indent = width - text_length - left_indent
    return " " * left_indent + text + " " * right_indent


135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
SPECIAL_MODEL_NAME_LINK_MAPPING = {
    "Data2VecAudio": "[Data2VecAudio](model_doc/data2vec)",
    "Data2VecText": "[Data2VecText](model_doc/data2vec)",
    "Data2VecVision": "[Data2VecVision](model_doc/data2vec)",
    "DonutSwin": "[DonutSwin](model_doc/donut)",
}

MODEL_NAMES_WITH_SAME_CONFIG = {
    "BARThez": "BART",
    "BARTpho": "BART",
    "BertJapanese": "BERT",
    "BERTweet": "BERT",
    "BORT": "BERT",
    "ByT5": "T5",
    "CPM": "OpenAI GPT-2",
    "DePlot": "Pix2Struct",
    "DialoGPT": "OpenAI GPT-2",
    "DiT": "BEiT",
    "FLAN-T5": "T5",
    "FLAN-UL2": "T5",
    "HerBERT": "BERT",
    "LayoutXLM": "LayoutLMv2",
    "Llama2": "LLaMA",
    "MatCha": "Pix2Struct",
    "mBART-50": "mBART",
    "Megatron-GPT2": "OpenAI GPT-2",
    "mLUKE": "LUKE",
    "MMS": "Wav2Vec2",
    "NLLB": "M2M100",
    "PhoBERT": "BERT",
    "T5v1.1": "T5",
    "TAPEX": "BART",
    "UL2": "T5",
    "Wav2Vec2Phoneme": "Wav2Vec2",
    "XLM-V": "XLM-RoBERTa",
    "XLS-R": "Wav2Vec2",
    "XLSR-Wav2Vec2": "Wav2Vec2",
}


Sylvain Gugger's avatar
Sylvain Gugger committed
175
176
177
178
def get_model_table_from_auto_modules() -> str:
    """
    Generates an up-to-date model table from the content of the auto modules.
    """
179
    # Dictionary model names to config.
180
    config_maping_names = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
181
    model_name_to_config = {
182
        name: config_maping_names[code]
183
        for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
184
        if code in config_maping_names
185
    }
186
    model_name_to_prefix = {name: config.replace("Config", "") for name, config in model_name_to_config.items()}
187

Sylvain Gugger's avatar
Sylvain Gugger committed
188
    # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
189
190
191
192
193
    pt_models = collections.defaultdict(bool)
    tf_models = collections.defaultdict(bool)
    flax_models = collections.defaultdict(bool)

    # Let's lookup through all transformers object (once).
194
    for attr_name in dir(transformers_module):
195
        lookup_dict = None
196
        if _re_tf_models.match(attr_name) is not None:
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
            lookup_dict = tf_models
            attr_name = _re_tf_models.match(attr_name).groups()[0]
        elif _re_flax_models.match(attr_name) is not None:
            lookup_dict = flax_models
            attr_name = _re_flax_models.match(attr_name).groups()[0]
        elif _re_pt_models.match(attr_name) is not None:
            lookup_dict = pt_models
            attr_name = _re_pt_models.match(attr_name).groups()[0]

        if lookup_dict is not None:
            while len(attr_name) > 0:
                if attr_name in model_name_to_prefix.values():
                    lookup_dict[attr_name] = True
                    break
                # Try again after removing the last word in the name
                attr_name = "".join(camel_case_split(attr_name)[:-1])

    # Let's build that table!
215
216
217
218
219
220
221
222
223
224
    model_names = list(model_name_to_config.keys()) + list(MODEL_NAMES_WITH_SAME_CONFIG.keys())

    # model name to doc link mapping
    model_names_mapping = transformers_module.models.auto.configuration_auto.MODEL_NAMES_MAPPING
    model_name_to_link_mapping = {value: f"[{value}](model_doc/{key})" for key, value in model_names_mapping.items()}
    # update mapping with special model names
    model_name_to_link_mapping = {
        k: SPECIAL_MODEL_NAME_LINK_MAPPING[k] if k in SPECIAL_MODEL_NAME_LINK_MAPPING else v
        for k, v in model_name_to_link_mapping.items()
    }
225
226

    # MaskFormerSwin and TimmBackbone are backbones and so not meant to be loaded and used on their own. Instead, they define architectures which can be loaded using the AutoBackbone API.
227
    names_to_exclude = ["MaskFormerSwin", "TimmBackbone", "Speech2Text2"]
228
    model_names = [name for name in model_names if name not in names_to_exclude]
229
    model_names.sort(key=str.lower)
230

231
    columns = ["Model", "PyTorch support", "TensorFlow support", "Flax Support"]
232
    # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
233

234
    widths = [len(c) + 2 for c in columns]
235
    widths[0] = max([len(doc_link) for doc_link in model_name_to_link_mapping.values()]) + 2
236

Sylvain Gugger's avatar
Sylvain Gugger committed
237
238
    # Build the table per se
    table = "|" + "|".join([_center_text(c, w) for c, w in zip(columns, widths)]) + "|\n"
239
240
    # Use ":-----:" format to center-aligned table cell texts
    table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths]) + "|\n"
241
242

    check = {True: "✅", False: "❌"}
243

244
    for name in model_names:
245
246
247
248
        if name in MODEL_NAMES_WITH_SAME_CONFIG.keys():
            prefix = model_name_to_prefix[MODEL_NAMES_WITH_SAME_CONFIG[name]]
        else:
            prefix = model_name_to_prefix[name]
249
        line = [
250
            model_name_to_link_mapping[name],
251
252
253
254
255
256
257
258
259
            check[pt_models[prefix]],
            check[tf_models[prefix]],
            check[flax_models[prefix]],
        ]
        table += "|" + "|".join([_center_text(l, w) for l, w in zip(line, widths)]) + "|\n"
    return table


def check_model_table(overwrite=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
260
261
262
263
264
265
266
    """
    Check the model table in the index.md is consistent with the state of the lib and potentially fix it.

    Args:
        overwrite (`bool`, *optional*, defaults to `False`):
            Whether or not to overwrite the table when it's not up to date.
    """
267
    current_table, start_index, end_index, lines = _find_text_in_file(
268
        filename=os.path.join(PATH_TO_DOCS, "index.md"),
Sylvain Gugger's avatar
Sylvain Gugger committed
269
270
        start_prompt="<!--This table is updated automatically from the auto modules",
        end_prompt="<!-- End table-->",
271
272
273
274
275
    )
    new_table = get_model_table_from_auto_modules()

    if current_table != new_table:
        if overwrite:
276
            with open(os.path.join(PATH_TO_DOCS, "index.md"), "w", encoding="utf-8", newline="\n") as f:
277
278
279
                f.writelines(lines[:start_index] + [new_table] + lines[end_index:])
        else:
            raise ValueError(
280
                "The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this."
281
282
283
284
285
286
287
288
289
            )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
    args = parser.parse_args()

    check_model_table(args.fix_and_overwrite)