tokenization_xlnet.py 13 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for XLNet model."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import json
import logging
import os
import sys
from shutil import copyfile
from io import open

import unicodedata
import six

from .file_utils import cached_path

logger = logging.getLogger(__name__)

PRETRAINED_VOCAB_ARCHIVE_MAP = {
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-spiece.model",
}
VOCAB_NAME = 'spiece.model'
SPECIAL_TOKENS_NAME = 'special_tokens.txt'

39
40
41
SPIECE_UNDERLINE = u'▁'

# Segments (not really needed)
42
43
44
45
46
SEG_ID_A   = 0
SEG_ID_B   = 1
SEG_ID_CLS = 2
SEG_ID_SEP = 3
SEG_ID_PAD = 4
thomwolf's avatar
thomwolf committed
47
48
49
50
51
52

class XLNetTokenizer(object):
    """
        SentencePiece based tokenizer. Peculiarities:
            - requires SentencePiece: https://github.com/google/sentencepiece
    """
53
54
55
56
57
58
59
60
61
62
63
64
    # Tokens
    special_symbols = {
        "<unk>"  : 0,
        "<s>"    : 1,
        "</s>"   : 2,
        "<cls>"  : 3,
        "<sep>"  : 4,
        "<pad>"  : 5,
        "<mask>" : 6,
        "<eod>"  : 7,
        "<eop>"  : 8,
    }
thomwolf's avatar
thomwolf committed
65
66
67
68
69
70
71
72
73
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
        """
        Instantiate a PreTrainedBertModel from a pre-trained model file.
        Download and cache the pre-trained model file if needed.
        """
        if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
            vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
            special_tokens_file = None
74
75
76
77
78
79
80
81
82
83
            if '-cased' in pretrained_model_name_or_path and kwargs.get('do_lower_case', True):
                logger.warning("The pre-trained model you are loading is a cased model but you have not set "
                               "`do_lower_case` to False. We are setting `do_lower_case=False` for you but "
                               "you may want to check this behavior.")
                kwargs['do_lower_case'] = False
            elif '-cased' not in pretrained_model_name_or_path and not kwargs.get('do_lower_case', True):
                logger.warning("The pre-trained model you are loading is an uncased model but you have set "
                               "`do_lower_case` to False. We are setting `do_lower_case=True` for you "
                               "but you may want to check this behavior.")
                kwargs['do_lower_case'] = True
thomwolf's avatar
thomwolf committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
        else:
            vocab_file = os.path.join(pretrained_model_name_or_path, VOCAB_NAME)
            special_tokens_file = os.path.join(pretrained_model_name_or_path, SPECIAL_TOKENS_NAME)
            if not os.path.exists(special_tokens_file):
                special_tokens_file = None
            else:
                logger.info("loading special tokens file {}".format(special_tokens_file))
        # redirect to the cache, if necessary
        try:
            resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
        except EnvironmentError:
            if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
                logger.error(
                    "Couldn't reach server at '{}' to download vocabulary.".format(
                        vocab_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find files {}"
                    "at this path or url.".format(
                        pretrained_model_name_or_path,
                        ', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
                        pretrained_model_name_or_path,
                        vocab_file))
            return None
        if resolved_vocab_file == vocab_file:
            logger.info("loading vocabulary file {}".format(vocab_file))
        else:
            logger.info("loading vocabulary file {} from cache at {}".format(
                vocab_file, resolved_vocab_file))
        # Instantiate tokenizer.
        if special_tokens_file and 'special_tokens' not in kwargs:
            special_tokens = open(special_tokens_file, encoding='utf-8').read().split('\n')[:-1]
        else:
            special_tokens = kwargs.pop('special_tokens', [])
        tokenizer = cls(resolved_vocab_file, special_tokens=special_tokens, *inputs, **kwargs)
        return tokenizer

    def __init__(self, vocab_file, special_tokens=None, max_len=None,
                 do_lower_case=False, remove_space=True, keep_accents=False):
        try:
            import sentencepiece as spm
        except ImportError:
            logger.warning("You need to install SentencePiece to use XLNetTokenizer: https://github.com/google/sentencepiece"
                           "pip install sentencepiece")

        self.max_len = max_len if max_len is not None else int(1e12)
        self.do_lower_case = do_lower_case
        self.remove_space = remove_space
        self.keep_accents = keep_accents
        self.vocab_file = vocab_file

        self.sp_model = spm.SentencePieceProcessor()
        self.sp_model.Load(vocab_file)
        self.special_tokens = {}
        self.special_tokens_decoder = {}
        self.set_special_tokens(special_tokens)

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    @property
    def UNK_TOKEN(self):
        return "<unk>"

    @property
    def SEP_TOKEN(self):
        return "<sep>"

    @property
    def PAD_TOKEN(self):
        return "<pad>"

    @property
    def CLS_TOKEN(self):
        return "<cls>"

    @property
    def MASK_TOKEN(self):
        return "<mask>"

    @property
    def UNK_ID(self):
        return self.special_symbols["<unk>"]

    @property
    def SEP_ID(self):
        return self.special_symbols["<sep>"]

    @property
    def PAD_ID(self):
        return self.special_symbols["<pad>"]

    @property
    def CLS_ID(self):
        return self.special_symbols["<cls>"]

    @property
    def MASK_ID(self):
        return self.special_symbols["<mask>"]

thomwolf's avatar
thomwolf committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
    def __len__(self):
        return len(self.encoder) + len(self.special_tokens)

    def set_special_tokens(self, special_tokens):
        """ Add a list of additional tokens to the encoder.
            The additional tokens are indexed starting from the last index of the
            current vocabulary in the order of the `special_tokens` list.
        """
        if not special_tokens:
            self.special_tokens = {}
            self.special_tokens_decoder = {}
            return
        self.special_tokens = dict((tok, len(self.sp_model) + i) for i, tok in enumerate(special_tokens))
        self.special_tokens_decoder = {v:k for k, v in self.special_tokens.items()}
        logger.info("Special tokens: %s", str(self.special_tokens))

    def preprocess_text(self, inputs):
        if self.remove_space:
            outputs = ' '.join(inputs.strip().split())
        else:
            outputs = inputs
        outputs = outputs.replace("``", '"').replace("''", '"')

        if six.PY2 and isinstance(outputs, str):
            outputs = outputs.decode('utf-8')

        if not self.keep_accents:
            outputs = unicodedata.normalize('NFKD', outputs)
            outputs = ''.join([c for c in outputs if not unicodedata.combining(c)])
        if self.do_lower_case:
            outputs = outputs.lower()

        return outputs

    def tokenize(self, text, return_unicode=True, sample=False):
        """ Tokenize a string.
            return_unicode is used only for py2
        """
        text = self.preprocess_text(text)
        # note(zhiliny): in some systems, sentencepiece only accepts str for py2
        if six.PY2 and isinstance(text, unicode):
            text = text.encode('utf-8')

        if not sample:
            pieces = self.sp_model.EncodeAsPieces(text)
        else:
            pieces = self.sp_model.SampleEncodeAsPieces(text, 64, 0.1)
        new_pieces = []
        for piece in pieces:
            if len(piece) > 1 and piece[-1] == ',' and piece[-2].isdigit():
                cur_pieces = self.sp_model.EncodeAsPieces(
                    piece[:-1].replace(SPIECE_UNDERLINE, ''))
                if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
                    if len(cur_pieces[0]) == 1:
                        cur_pieces = cur_pieces[1:]
                    else:
                        cur_pieces[0] = cur_pieces[0][1:]
                cur_pieces.append(piece[-1])
                new_pieces.extend(cur_pieces)
            else:
                new_pieces.append(piece)

        # note(zhiliny): convert back to unicode for py2
        if six.PY2 and return_unicode:
            ret_pieces = []
            for piece in new_pieces:
                if isinstance(piece, str):
                    piece = piece.decode('utf-8')
                ret_pieces.append(piece)
            new_pieces = ret_pieces

        return new_pieces

    def convert_tokens_to_ids(self, tokens, sample=False):
        """ Converts a sequence of tokens into ids using the vocab. """
        ids = []
        if isinstance(tokens, str) or (sys.version_info[0] == 2 and isinstance(tokens, unicode)):
            if tokens in self.special_tokens:
                return self.special_tokens[tokens]
            else:
                return self.sp_model.PieceToId(tokens)
        for token in tokens:
            if token in self.special_tokens:
                ids.append(self.special_tokens[token])
            else:
                ids.append(self.sp_model.PieceToId(token))
        if len(ids) > self.max_len:
            logger.warning(
                "Token indices sequence length is longer than the specified maximum "
                " sequence length for this XLNet model ({} > {}). Running this"
                " sequence through the model will result in indexing errors".format(len(ids), self.max_len)
            )
        return ids

thomwolf's avatar
thomwolf committed
276
    def convert_ids_to_tokens(self, ids, return_unicode=True, skip_special_tokens=False):
thomwolf's avatar
thomwolf committed
277
278
279
280
281
282
283
284
        """Converts a sequence of ids in tokens."""
        tokens = []
        for i in ids:
            if i in self.special_tokens_decoder:
                if not skip_special_tokens:
                    tokens.append(self.special_tokens_decoder[i])
            else:
                tokens.append(self.sp_model.IdToPiece(i))
thomwolf's avatar
thomwolf committed
285
286
287
288
289
290
291
292

        if six.PY2 and return_unicode:
            ret_pieces = []
            for piece in tokens:
                if isinstance(piece, str):
                    piece = piece.decode('utf-8')
                ret_pieces.append(piece)
            tokens = ret_pieces
thomwolf's avatar
thomwolf committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
        return tokens

    def encode(self, text, sample=False):
        return self.convert_tokens_to_ids(self.tokenize(text, sample=sample))

    def decode(self, ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
        """Converts a sequence of ids in a string."""
        tokens = self.convert_ids_to_tokens(ids, skip_special_tokens=skip_special_tokens)
        out_string = ''.join(tokens)
        if clean_up_tokenization_spaces:
            out_string = out_string.strip().replace('<unk>', '')
            out_string = out_string.replace(' .', '.').replace(' ?', '?').replace(' !', '!').replace(' ,', ','
                    ).replace(" ' ", "'").replace(" n't", "n't").replace(" 'm", "'m").replace(" do not", " don't"
                    ).replace(" 's", "'s").replace(" 've", "'ve").replace(" 're", "'re")
        return out_string

    def save_vocabulary(self, vocab_path):
        """ Save the sentencepiece vocabulary (copy original file) and special tokens file
            to a directory.
        """
        if not os.path.isdir(vocab_path):
            logger.error("Vocabulary path ({}) should be a directory".format(vocab_path))
            return
        out_vocab_file = os.path.join(vocab_path, VOCAB_NAME)
        special_tokens_file = os.path.join(vocab_path, SPECIAL_TOKENS_NAME)

        copyfile(self.vocab_file, out_vocab_file)

        index = len(self.sp_model)
        with open(special_tokens_file, 'w', encoding='utf-8') as writer:
            for token, token_index in sorted(self.special_tokens.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving special tokens vocabulary to {}: BPE indices are not consecutive."
                                   " Please check that the tokenizer is not corrupted!".format(special_tokens_file))
                    index = token_index
                writer.write(token + u'\n')
                index += 1

        return out_vocab_file, special_tokens_file