tokenization.py 18.8 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes."""

thomwolf's avatar
thomwolf committed
17
from __future__ import absolute_import, division, print_function, unicode_literals
18
19

import collections
thomwolf's avatar
thomwolf committed
20
import logging
thomwolf's avatar
thomwolf committed
21
22
23
import os
import unicodedata
from io import open
24

thomwolf's avatar
thomwolf committed
25
26
27
28
29
30
31
32
from .file_utils import cached_path

logger = logging.getLogger(__name__)

PRETRAINED_VOCAB_ARCHIVE_MAP = {
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt",
thomwolf's avatar
thomwolf committed
33
34
35
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt",
thomwolf's avatar
thomwolf committed
36
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt",
37
    'bert-base-german-cased': "https://int-deepset-models-bert.s3.eu-central-1.amazonaws.com/pytorch/bert-base-german-cased-vocab.txt",
38
39
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-vocab.txt",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-vocab.txt",
thomwolf's avatar
thomwolf committed
40
41
42
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-vocab.txt",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-vocab.txt",
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-vocab.txt",
thomwolf's avatar
thomwolf committed
43
}
44
45
46
47
48
49
50
51
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
    'bert-base-uncased': 512,
    'bert-large-uncased': 512,
    'bert-base-cased': 512,
    'bert-large-cased': 512,
    'bert-base-multilingual-uncased': 512,
    'bert-base-multilingual-cased': 512,
    'bert-base-chinese': 512,
52
    'bert-base-german-cased': 512,
53
54
    'bert-large-uncased-whole-word-masking': 512,
    'bert-large-cased-whole-word-masking': 512,
thomwolf's avatar
thomwolf committed
55
56
57
    'bert-large-uncased-whole-word-masking-finetuned-squad': 512,
    'bert-large-cased-whole-word-masking-finetuned-squad': 512,
    'bert-base-cased-finetuned-mrpc': 512,
58
}
59
VOCAB_NAME = 'vocab.txt'
60
61
62
63
64

def load_vocab(vocab_file):
    """Loads a vocabulary file into a dictionary."""
    vocab = collections.OrderedDict()
    index = 0
thomwolf's avatar
thomwolf committed
65
    with open(vocab_file, "r", encoding="utf-8") as reader:
66
        while True:
thomwolf's avatar
thomwolf committed
67
            token = reader.readline()
68
69
70
71
72
73
74
75
76
            if not token:
                break
            token = token.strip()
            vocab[token] = index
            index += 1
    return vocab


def whitespace_tokenize(text):
Yongbo Wang's avatar
typo  
Yongbo Wang committed
77
    """Runs basic whitespace cleaning and splitting on a piece of text."""
78
79
80
81
82
83
84
    text = text.strip()
    if not text:
        return []
    tokens = text.split()
    return tokens


thomwolf's avatar
thomwolf committed
85
86
class BertTokenizer(object):
    """Runs end-to-end tokenization: punctuation splitting + wordpiece"""
87

88
    def __init__(self, vocab_file, do_lower_case=True, max_len=None, do_basic_tokenize=True,
WrRan's avatar
WrRan committed
89
                 never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")):
90
91
92
        """Constructs a BertTokenizer.

        Args:
93
94
95
96
97
98
99
100
101
102
          vocab_file: Path to a one-wordpiece-per-line vocabulary file
          do_lower_case: Whether to lower case the input
                         Only has an effect when do_wordpiece_only=False
          do_basic_tokenize: Whether to do basic tokenization before wordpiece.
          max_len: An artificial maximum length to truncate tokenized sequences to;
                         Effective maximum length is always the minimum of this
                         value (if specified) and the underlying BERT model's
                         sequence length.
          never_split: List of tokens which will never be split during tokenization.
                         Only has an effect when do_wordpiece_only=False
103
        """
thomwolf's avatar
thomwolf committed
104
105
106
107
        if not os.path.isfile(vocab_file):
            raise ValueError(
                "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
                "model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file))
108
        self.vocab = load_vocab(vocab_file)
thomwolf's avatar
thomwolf committed
109
110
        self.ids_to_tokens = collections.OrderedDict(
            [(ids, tok) for tok, ids in self.vocab.items()])
111
112
113
114
        self.do_basic_tokenize = do_basic_tokenize
        if do_basic_tokenize:
          self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case,
                                                never_split=never_split)
115
        self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
116
        self.max_len = max_len if max_len is not None else int(1e12)
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    @property
    def UNK_TOKEN(self):
        return "[UNK]"

    @property
    def SEP_TOKEN(self):
        return "[SEP]"

    @property
    def PAD_TOKEN(self):
        return "[PAD]"

    @property
    def CLS_TOKEN(self):
        return "[CLS]"

    @property
    def MASK_TOKEN(self):
        return "[MASK]"

    @property
    def UNK_ID(self):
        return self.vocab["[UNK]"]

    @property
    def SEP_ID(self):
        return self.vocab["[SEP]"]

    @property
    def PAD_ID(self):
        return self.vocab["[PAD]"]

    @property
    def CLS_ID(self):
        return self.vocab["[CLS]"]

    @property
    def MASK_ID(self):
        return self.vocab["[MASK]"]

158
    def tokenize(self, text):
thomwolf's avatar
thomwolf committed
159
        split_tokens = []
160
        if self.do_basic_tokenize:
thomwolf's avatar
thomwolf committed
161
162
163
            for token in self.basic_tokenizer.tokenize(text):
                for sub_token in self.wordpiece_tokenizer.tokenize(token):
                    split_tokens.append(sub_token)
164
        else:
thomwolf's avatar
thomwolf committed
165
            split_tokens = self.wordpiece_tokenizer.tokenize(text)
166
167
168
        return split_tokens

    def convert_tokens_to_ids(self, tokens):
thomwolf's avatar
thomwolf committed
169
170
171
172
        """Converts a sequence of tokens into ids using the vocab."""
        ids = []
        for token in tokens:
            ids.append(self.vocab[token])
173
        if len(ids) > self.max_len:
174
            logger.warning(
175
176
177
178
                "Token indices sequence length is longer than the specified maximum "
                " sequence length for this BERT model ({} > {}). Running this"
                " sequence through BERT will result in indexing errors".format(len(ids), self.max_len)
            )
thomwolf's avatar
thomwolf committed
179
180
181
182
183
184
185
186
187
        return ids

    def convert_ids_to_tokens(self, ids):
        """Converts a sequence of ids in wordpiece tokens using the vocab."""
        tokens = []
        for i in ids:
            tokens.append(self.ids_to_tokens[i])
        return tokens

188
    def save_vocabulary(self, vocab_path):
thomwolf's avatar
thomwolf committed
189
        """Save the tokenizer vocabulary to a directory or file."""
190
        index = 0
thomwolf's avatar
thomwolf committed
191
192
        if os.path.isdir(vocab_path):
            vocab_file = os.path.join(vocab_path, VOCAB_NAME)
193
194
195
196
197
198
199
200
        with open(vocab_file, "w", encoding="utf-8") as writer:
            for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving vocabulary to {}: vocabulary indices are not consecutive."
                                   " Please check that the vocabulary is not corrupted!".format(vocab_file))
                    index = token_index
                writer.write(token + u'\n')
                index += 1
201
        return vocab_file
202

thomwolf's avatar
thomwolf committed
203
    @classmethod
thomwolf's avatar
thomwolf committed
204
    def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
205
206
207
208
        """
        Instantiate a PreTrainedBertModel from a pre-trained model file.
        Download and cache the pre-trained model file if needed.
        """
thomwolf's avatar
thomwolf committed
209
210
        if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
            vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
211
212
213
214
215
216
217
218
219
220
            if '-cased' in pretrained_model_name_or_path and kwargs.get('do_lower_case', True):
                logger.warning("The pre-trained model you are loading is a cased model but you have not set "
                               "`do_lower_case` to False. We are setting `do_lower_case=False` for you but "
                               "you may want to check this behavior.")
                kwargs['do_lower_case'] = False
            elif '-cased' not in pretrained_model_name_or_path and not kwargs.get('do_lower_case', True):
                logger.warning("The pre-trained model you are loading is an uncased model but you have set "
                               "`do_lower_case` to False. We are setting `do_lower_case=True` for you "
                               "but you may want to check this behavior.")
                kwargs['do_lower_case'] = True
thomwolf's avatar
thomwolf committed
221
        else:
thomwolf's avatar
thomwolf committed
222
            vocab_file = pretrained_model_name_or_path
223
224
        if os.path.isdir(vocab_file):
            vocab_file = os.path.join(vocab_file, VOCAB_NAME)
thomwolf's avatar
thomwolf committed
225
226
        # redirect to the cache, if necessary
        try:
227
            resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
thomwolf's avatar
thomwolf committed
228
        except EnvironmentError:
thomwolf's avatar
thomwolf committed
229
230
231
232
233
234
235
236
237
238
239
240
            if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
                logger.error(
                    "Couldn't reach server at '{}' to download vocabulary.".format(
                        vocab_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find any file "
                    "associated to this path or url.".format(
                        pretrained_model_name_or_path,
                        ', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
                        vocab_file))
241
242
243
244
245
246
            return None
        if resolved_vocab_file == vocab_file:
            logger.info("loading vocabulary file {}".format(vocab_file))
        else:
            logger.info("loading vocabulary file {} from cache at {}".format(
                vocab_file, resolved_vocab_file))
thomwolf's avatar
thomwolf committed
247
        if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
248
249
            # if we're using a pretrained model, ensure the tokenizer wont index sequences longer
            # than the number of positional embeddings
thomwolf's avatar
thomwolf committed
250
            max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path]
251
            kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
252
253
        # Instantiate tokenizer.
        tokenizer = cls(resolved_vocab_file, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
254
        return tokenizer
255
256
257
258
259


class BasicTokenizer(object):
    """Runs basic tokenization (punctuation splitting, lower casing, etc.)."""

WrRan's avatar
WrRan committed
260
261
262
    def __init__(self,
                 do_lower_case=True,
                 never_split=("[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]")):
263
264
265
266
267
268
        """Constructs a BasicTokenizer.

        Args:
          do_lower_case: Whether to lower case the input.
        """
        self.do_lower_case = do_lower_case
WrRan's avatar
WrRan committed
269
        self.never_split = never_split
270
271
272
273

    def tokenize(self, text):
        """Tokenizes a piece of text."""
        text = self._clean_text(text)
274
275
276
277
278
279
280
        # This was added on November 1st, 2018 for the multilingual and Chinese
        # models. This is also applied to the English models now, but it doesn't
        # matter since the English models were not trained on any Chinese data
        # and generally don't have any Chinese data in them (there are Chinese
        # characters in the vocabulary because Wikipedia does have some Chinese
        # words in the English Wikipedia.).
        text = self._tokenize_chinese_chars(text)
281
282
283
        orig_tokens = whitespace_tokenize(text)
        split_tokens = []
        for token in orig_tokens:
284
            if self.do_lower_case and token not in self.never_split:
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
                token = token.lower()
                token = self._run_strip_accents(token)
            split_tokens.extend(self._run_split_on_punc(token))

        output_tokens = whitespace_tokenize(" ".join(split_tokens))
        return output_tokens

    def _run_strip_accents(self, text):
        """Strips accents from a piece of text."""
        text = unicodedata.normalize("NFD", text)
        output = []
        for char in text:
            cat = unicodedata.category(char)
            if cat == "Mn":
                continue
            output.append(char)
        return "".join(output)

    def _run_split_on_punc(self, text):
        """Splits punctuation on a piece of text."""
WrRan's avatar
WrRan committed
305
306
        if text in self.never_split:
            return [text]
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
        chars = list(text)
        i = 0
        start_new_word = True
        output = []
        while i < len(chars):
            char = chars[i]
            if _is_punctuation(char):
                output.append([char])
                start_new_word = True
            else:
                if start_new_word:
                    output.append([])
                start_new_word = False
                output[-1].append(char)
            i += 1

        return ["".join(x) for x in output]
324

325
326
327
328
329
330
331
332
333
334
335
336
    def _tokenize_chinese_chars(self, text):
        """Adds whitespace around any CJK character."""
        output = []
        for char in text:
            cp = ord(char)
            if self._is_chinese_char(cp):
                output.append(" ")
                output.append(char)
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)
337

338
339
340
341
342
343
344
345
346
347
348
    def _is_chinese_char(self, cp):
        """Checks whether CP is the codepoint of a CJK character."""
        # This defines a "chinese character" as anything in the CJK Unicode block:
        #   https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
        #
        # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
        # despite its name. The modern Korean Hangul alphabet is a different block,
        # as is Japanese Hiragana and Katakana. Those alphabets are used to write
        # space-separated words, so they are not treated specially and handled
        # like the all of the other languages.
        if ((cp >= 0x4E00 and cp <= 0x9FFF) or  #
349
350
351
352
353
354
355
                (cp >= 0x3400 and cp <= 0x4DBF) or  #
                (cp >= 0x20000 and cp <= 0x2A6DF) or  #
                (cp >= 0x2A700 and cp <= 0x2B73F) or  #
                (cp >= 0x2B740 and cp <= 0x2B81F) or  #
                (cp >= 0x2B820 and cp <= 0x2CEAF) or
                (cp >= 0xF900 and cp <= 0xFAFF) or  #
                (cp >= 0x2F800 and cp <= 0x2FA1F)):  #
356
            return True
357

358
        return False
359

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    def _clean_text(self, text):
        """Performs invalid character removal and whitespace cleanup on text."""
        output = []
        for char in text:
            cp = ord(char)
            if cp == 0 or cp == 0xfffd or _is_control(char):
                continue
            if _is_whitespace(char):
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)


class WordpieceTokenizer(object):
    """Runs WordPiece tokenization."""

    def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100):
        self.vocab = vocab
        self.unk_token = unk_token
        self.max_input_chars_per_word = max_input_chars_per_word

    def tokenize(self, text):
        """Tokenizes a piece of text into its word pieces.

        This uses a greedy longest-match-first algorithm to perform tokenization
        using the given vocabulary.

        For example:
          input = "unaffable"
          output = ["un", "##aff", "##able"]

        Args:
          text: A single token or whitespace separated tokens. This should have
Julien Chaumond's avatar
Julien Chaumond committed
394
            already been passed through `BasicTokenizer`.
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471

        Returns:
          A list of wordpiece tokens.
        """

        output_tokens = []
        for token in whitespace_tokenize(text):
            chars = list(token)
            if len(chars) > self.max_input_chars_per_word:
                output_tokens.append(self.unk_token)
                continue

            is_bad = False
            start = 0
            sub_tokens = []
            while start < len(chars):
                end = len(chars)
                cur_substr = None
                while start < end:
                    substr = "".join(chars[start:end])
                    if start > 0:
                        substr = "##" + substr
                    if substr in self.vocab:
                        cur_substr = substr
                        break
                    end -= 1
                if cur_substr is None:
                    is_bad = True
                    break
                sub_tokens.append(cur_substr)
                start = end

            if is_bad:
                output_tokens.append(self.unk_token)
            else:
                output_tokens.extend(sub_tokens)
        return output_tokens


def _is_whitespace(char):
    """Checks whether `chars` is a whitespace character."""
    # \t, \n, and \r are technically contorl characters but we treat them
    # as whitespace since they are generally considered as such.
    if char == " " or char == "\t" or char == "\n" or char == "\r":
        return True
    cat = unicodedata.category(char)
    if cat == "Zs":
        return True
    return False


def _is_control(char):
    """Checks whether `chars` is a control character."""
    # These are technically control characters but we count them as whitespace
    # characters.
    if char == "\t" or char == "\n" or char == "\r":
        return False
    cat = unicodedata.category(char)
    if cat.startswith("C"):
        return True
    return False


def _is_punctuation(char):
    """Checks whether `chars` is a punctuation character."""
    cp = ord(char)
    # We treat all non-letter/number ASCII as punctuation.
    # Characters such as "^", "$", and "`" are not in the Unicode
    # Punctuation class but we treat them as punctuation anyways, for
    # consistency.
    if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
            (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
        return True
    cat = unicodedata.category(char)
    if cat.startswith("P"):
        return True
    return False