tokenization_gpt2.py 8.35 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import json
import logging
import os
import regex as re
from io import open

25
26
27
28
29
try:
    from functools import lru_cache
except ImportError:
    # Just a dummy decorator to get the checks to run on python2
    # because honestly I don't want to support a byte-level unicode BPE tokenizer on python 2 right now.
thomwolf's avatar
simple  
thomwolf committed
30
31
    def lru_cache():
        return lambda func: func
thomwolf's avatar
thomwolf committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

from .file_utils import cached_path

logger = logging.getLogger(__name__)

PRETRAINED_VOCAB_ARCHIVE_MAP = {
    'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json",
}
PRETRAINED_MERGES_ARCHIVE_MAP = {
    'gpt2': "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt",
}
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
    'gpt2': 1024,
}
VOCAB_NAME = 'vocab.json'
MERGES_NAME = 'merges.txt'

@lru_cache()
def bytes_to_unicode():
    """
    Returns list of utf-8 byte and a corresponding list of unicode strings.
    The reversible bpe codes work on unicode strings.
    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
    This is a signficant percentage of your normal, say, 32K bpe vocab.
    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
    And avoids mapping to whitespace/control characters the bpe code barfs on.
    """
    bs = list(range(ord("!"), ord("~")+1))+list(range(ord("隆"), ord("卢")+1))+list(range(ord("庐"), ord("每")+1))
    cs = bs[:]
    n = 0
    for b in range(2**8):
        if b not in bs:
            bs.append(b)
            cs.append(2**8+n)
            n += 1
    cs = [chr(n) for n in cs]
    return dict(zip(bs, cs))

def get_pairs(word):
    """Return set of symbol pairs in a word.

    Word is represented as tuple of symbols (symbols being variable-length strings).
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs

class GPT2Tokenizer(object):
    """
    GPT-2 BPE tokenizer. Peculiarities:
        - Byte-level BPE
    """
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs):
        """
        Instantiate a PreTrainedBertModel from a pre-trained model file.
        Download and cache the pre-trained model file if needed.
        """
        if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP:
            vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path]
            merges_file = PRETRAINED_MERGES_ARCHIVE_MAP[pretrained_model_name_or_path]
        else:
            vocab_file = os.path.join(pretrained_model_name_or_path, VOCAB_NAME)
            merges_file = os.path.join(pretrained_model_name_or_path, MERGES_NAME)
        # redirect to the cache, if necessary
        try:
            resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir)
            resolved_merges_file = cached_path(merges_file, cache_dir=cache_dir)
        except EnvironmentError:
            logger.error(
                "Model name '{}' was not found in model name list ({}). "
                "We assumed '{}' was a path or url but couldn't find files {} and {} "
                "at this path or url.".format(
                    pretrained_model_name_or_path,
                    ', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()),
                    pretrained_model_name_or_path,
                    vocab_file, merges_file))
            return None
        if resolved_vocab_file == vocab_file and resolved_merges_file == merges_file:
            logger.info("loading vocabulary file {}".format(vocab_file))
            logger.info("loading merges file {}".format(merges_file))
        else:
            logger.info("loading vocabulary file {} from cache at {}".format(
                vocab_file, resolved_vocab_file))
            logger.info("loading merges file {} from cache at {}".format(
                merges_file, resolved_merges_file))
        if pretrained_model_name_or_path in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP:
            # if we're using a pretrained model, ensure the tokenizer wont index sequences longer
            # than the number of positional embeddings
            max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name_or_path]
            kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
        # Instantiate tokenizer.
        tokenizer = cls(resolved_vocab_file, resolved_merges_file, *inputs, **kwargs)
        return tokenizer

131
132
    def __init__(self, vocab_file, merges_file, errors='replace', max_len=None):
        self.max_len = max_len if max_len is not None else int(1e12)
thomwolf's avatar
thomwolf committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
        self.encoder = json.load(open(vocab_file))
        self.decoder = {v:k for k,v in self.encoder.items()}
        self.errors = errors # how to handle errors in decoding
        self.byte_encoder = bytes_to_unicode()
        self.byte_decoder = {v:k for k, v in self.byte_encoder.items()}
        bpe_data = open(merges_file, encoding='utf-8').read().split('\n')[1:-1]
        bpe_merges = [tuple(merge.split()) for merge in bpe_data]
        self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
        self.cache = {}

        # Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
        self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")

    def __len__(self):
        return len(self.encoder)

    def bpe(self, token):
        if token in self.cache:
            return self.cache[token]
        word = tuple(token)
        pairs = get_pairs(word)

        if not pairs:
            return token

        while True:
            bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        self.cache[token] = word
        return word

    def encode(self, text):
        bpe_tokens = []
        for token in re.findall(self.pat, text):
            token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
            bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
195
        if len(bpe_tokens) > self.max_len:
196
            logger.warning(
197
198
199
200
                "Token indices sequence length is longer than the specified maximum "
                " sequence length for this OpenAI GPT-2 model ({} > {}). Running this"
                " sequence through the model will result in indexing errors".format(len(bpe_tokens), self.max_len)
            )
thomwolf's avatar
thomwolf committed
201
202
203
204
205
206
        return bpe_tokens

    def decode(self, tokens):
        text = ''.join([self.decoder[token] for token in tokens])
        text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)
        return text