image_captioning.md 8.97 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
<!--Copyright 2023 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
11
12
13
14

⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
-->


# 이미지 캡셔닝[[image-captioning]]

[[open-in-colab]]

이미지 캡셔닝(Image captioning)은 주어진 이미지에 대한 캡션을 예측하는 작업입니다. 
이미지 캡셔닝은 시각 장애인이 다양한 상황을 탐색하는 데 도움을 줄 수 있도록 시각 장애인을 보조하는 등 실생활에서 흔히 활용됩니다. 
따라서 이미지 캡셔닝은 이미지를 설명함으로써 사람들의 콘텐츠 접근성을 개선하는 데 도움이 됩니다.

이 가이드에서는 소개할 내용은 아래와 같습니다:

* 이미지 캡셔닝 모델을 파인튜닝합니다.
* 파인튜닝된 모델을 추론에 사용합니다.

시작하기 전에 필요한 모든 라이브러리가 설치되어 있는지 확인하세요:

```bash
pip install transformers datasets evaluate -q
pip install jiwer -q
```

Hugging Face 계정에 로그인하면 모델을 업로드하고 커뮤니티에 공유할 수 있습니다. 
토큰을 입력하여 로그인하세요.


```python
from huggingface_hub import notebook_login

notebook_login()
```

## 포켓몬 BLIP 캡션 데이터세트 가져오기[[load-the-pokmon-blip-captions-dataset]]

{이미지-캡션} 쌍으로 구성된 데이터세트를 가져오려면 🤗 Dataset 라이브러리를 사용합니다. 
PyTorch에서 자신만의 이미지 캡션 데이터세트를 만들려면 [이 노트북](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/GIT/Fine_tune_GIT_on_an_image_captioning_dataset.ipynb)을 참조하세요. 


```python
from datasets import load_dataset

ds = load_dataset("lambdalabs/pokemon-blip-captions")
ds
```
```bash
DatasetDict({
    train: Dataset({
        features: ['image', 'text'],
        num_rows: 833
    })
})
```

이 데이터세트는 `image``text`라는 두 특성을 가지고 있습니다.

<Tip>

많은 이미지 캡션 데이터세트에는 이미지당 여러 개의 캡션이 포함되어 있습니다. 
이러한 경우, 일반적으로 학습 중에 사용 가능한 캡션 중에서 무작위로 샘플을 추출합니다. 

</Tip>

78
[`~datasets.Dataset.train_test_split`] 메소드를 사용하여 데이터세트의 학습 분할을 학습 및 테스트 세트로 나눕니다:
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203


```python
ds = ds["train"].train_test_split(test_size=0.1)
train_ds = ds["train"]
test_ds = ds["test"]
```

학습 세트의 샘플 몇 개를 시각화해 봅시다.
Let's visualize a couple of samples from the training set. 


```python
from textwrap import wrap
import matplotlib.pyplot as plt
import numpy as np


def plot_images(images, captions):
    plt.figure(figsize=(20, 20))
    for i in range(len(images)):
        ax = plt.subplot(1, len(images), i + 1)
        caption = captions[i]
        caption = "\n".join(wrap(caption, 12))
        plt.title(caption)
        plt.imshow(images[i])
        plt.axis("off")


sample_images_to_visualize = [np.array(train_ds[i]["image"]) for i in range(5)]
sample_captions = [train_ds[i]["text"] for i in range(5)]
plot_images(sample_images_to_visualize, sample_captions)
```
    
<div class="flex justify-center">
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/sample_training_images_image_cap.png" alt="Sample training images"/>
</div>

## 데이터세트 전처리[[preprocess-the-dataset]]

데이터세트에는 이미지와 텍스트라는 두 가지 양식이 있기 때문에, 전처리 파이프라인에서 이미지와 캡션을 모두 전처리합니다.

전처리 작업을 위해, 파인튜닝하려는 모델에 연결된 프로세서 클래스를 가져옵니다. 

```python
from transformers import AutoProcessor

checkpoint = "microsoft/git-base"
processor = AutoProcessor.from_pretrained(checkpoint)
```

프로세서는 내부적으로 크기 조정 및 픽셀 크기 조정을 포함한 이미지 전처리를 수행하고 캡션을 토큰화합니다. 

```python
def transforms(example_batch):
    images = [x for x in example_batch["image"]]
    captions = [x for x in example_batch["text"]]
    inputs = processor(images=images, text=captions, padding="max_length")
    inputs.update({"labels": inputs["input_ids"]})
    return inputs


train_ds.set_transform(transforms)
test_ds.set_transform(transforms)
```

데이터세트가 준비되었으니 이제 파인튜닝을 위해 모델을 설정할 수 있습니다.

## 기본 모델 가져오기[[load-a-base-model]]

["microsoft/git-base"](https://huggingface.co/microsoft/git-base)[`AutoModelForCausalLM`](https://huggingface.co/docs/transformers/model_doc/auto#transformers.AutoModelForCausalLM) 객체로 가져옵니다.


```python
from transformers import AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained(checkpoint)
```

## 평가[[evaluate]]

이미지 캡션 모델은 일반적으로 [Rouge 점수](https://huggingface.co/spaces/evaluate-metric/rouge) 또는 [단어 오류율(Word Error Rate)](https://huggingface.co/spaces/evaluate-metric/wer)로 평가합니다. 
이 가이드에서는 단어 오류율(WER)을 사용합니다. 

이를 위해 🤗 Evaluate 라이브러리를 사용합니다. 
WER의 잠재적 제한 사항 및 기타 문제점은 [이 가이드](https://huggingface.co/spaces/evaluate-metric/wer)를 참조하세요. 


```python
from evaluate import load
import torch

wer = load("wer")


def compute_metrics(eval_pred):
    logits, labels = eval_pred
    predicted = logits.argmax(-1)
    decoded_labels = processor.batch_decode(labels, skip_special_tokens=True)
    decoded_predictions = processor.batch_decode(predicted, skip_special_tokens=True)
    wer_score = wer.compute(predictions=decoded_predictions, references=decoded_labels)
    return {"wer_score": wer_score}
```

## 학습![[train!]]

이제 모델 파인튜닝을 시작할 준비가 되었습니다. 이를 위해 🤗 [`Trainer`]를 사용합니다. 

먼저, [`TrainingArguments`]를 사용하여 학습 인수를 정의합니다.


```python
from transformers import TrainingArguments, Trainer

model_name = checkpoint.split("/")[1]

training_args = TrainingArguments(
    output_dir=f"{model_name}-pokemon",
    learning_rate=5e-5,
    num_train_epochs=50,
    fp16=True,
    per_device_train_batch_size=32,
    per_device_eval_batch_size=32,
    gradient_accumulation_steps=2,
    save_total_limit=3,
204
    eval_strategy="steps",
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
    eval_steps=50,
    save_strategy="steps",
    save_steps=50,
    logging_steps=50,
    remove_unused_columns=False,
    push_to_hub=True,
    label_names=["labels"],
    load_best_model_at_end=True,
)
```

학습 인수를 데이터세트, 모델과 함께 🤗 Trainer에 전달합니다. 

```python
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_ds,
    eval_dataset=test_ds,
    compute_metrics=compute_metrics,
)
```

학습을 시작하려면 [`Trainer`] 객체에서 [`~Trainer.train`]을 호출하기만 하면 됩니다.

```python 
trainer.train()
```

학습이 진행되면서 학습 손실이 원활하게 감소하는 것을 볼 수 있습니다.

학습이 완료되면 모든 사람이 모델을 사용할 수 있도록 [`~Trainer.push_to_hub`] 메소드를 사용하여 모델을 허브에 공유하세요:


```python
trainer.push_to_hub()
```

## 추론[[inference]]

`test_ds`에서 샘플 이미지를 가져와 모델을 테스트합니다.


```python
from PIL import Image
import requests

url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/pokemon.png"
image = Image.open(requests.get(url, stream=True).raw)
image
```

<div class="flex justify-center">
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/test_image_image_cap.png" alt="Test image"/>
</div>
    
모델에 사용할 이미지를 준비합니다.

```python
device = "cuda" if torch.cuda.is_available() else "cpu"

inputs = processor(images=image, return_tensors="pt").to(device)
pixel_values = inputs.pixel_values
```

[`generate`]를 호출하고 예측을 디코딩합니다.

```python
generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(generated_caption)
```
```bash
a drawing of a pink and blue pokemon
```

파인튜닝된 모델이 꽤 괜찮은 캡션을 생성한 것 같습니다!