test_modeling_vitmatte.py 9.52 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch VitMatte model. """


import unittest

from huggingface_hub import hf_hub_download

from transformers import VitMatteConfig
from transformers.testing_utils import (
    require_torch,
    slow,
    torch_device,
)
from transformers.utils import is_torch_available, is_vision_available

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import VitDetConfig, VitMatteForImageMatting


if is_vision_available():
    from PIL import Image

    from transformers import VitMatteImageProcessor


class VitMatteModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=32,
        patch_size=16,
        num_channels=4,
        is_training=True,
        use_labels=False,
        hidden_size=2,
        num_hidden_layers=2,
        num_attention_heads=2,
        hidden_act="gelu",
        type_sequence_label_size=10,
        initializer_range=0.02,
        scope=None,
        out_features=["stage1"],
        fusion_hidden_sizes=[128, 64, 32, 16],
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_act = hidden_act
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.scope = scope
        self.out_features = out_features
        self.fusion_hidden_sizes = fusion_hidden_sizes

        self.seq_length = (self.image_size // self.patch_size) ** 2

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            raise NotImplementedError("Training is not yet supported")

        config = self.get_config()

        return config, pixel_values, labels

    def get_backbone_config(self):
        return VitDetConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            hidden_size=self.hidden_size,
            is_training=self.is_training,
            hidden_act=self.hidden_act,
            out_features=self.out_features,
        )

    def get_config(self):
        return VitMatteConfig(
            backbone_config=self.get_backbone_config(),
113
            backbone=None,
NielsRogge's avatar
NielsRogge committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
            hidden_size=self.hidden_size,
            fusion_hidden_sizes=self.fusion_hidden_sizes,
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = VitMatteForImageMatting(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(result.alphas.shape, (self.batch_size, 1, self.image_size, self.image_size))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class VitMatteModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as VitMatte does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (VitMatteForImageMatting,) if is_torch_available() else ()
    pipeline_model_mapping = {}

    fx_compatible = False
    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = VitMatteModelTester(self)
        self.config_tester = ConfigTester(self, config_class=VitMatteConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.create_and_test_config_common_properties()
        self.config_tester.create_and_test_config_to_json_string()
        self.config_tester.create_and_test_config_to_json_file()
        self.config_tester.create_and_test_config_from_and_save_pretrained()
        self.config_tester.create_and_test_config_with_num_labels()
        self.config_tester.check_config_can_be_init_without_params()
        self.config_tester.check_config_arguments_init()

    def create_and_test_config_common_properties(self):
        return

    @unittest.skip(reason="VitMatte does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="Training is not yet supported")
    def test_training(self):
        pass

    @unittest.skip(reason="Training is not yet supported")
    def test_training_gradient_checkpointing(self):
        pass

175
176
177
178
179
180
181
182
183
184
185
186
    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

NielsRogge's avatar
NielsRogge committed
187
188
189
190
191
192
193
194
195
196
    @unittest.skip(reason="ViTMatte does not support input and output embeddings")
    def test_model_common_attributes(self):
        pass

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
197
198
199
        model_name = "hustvl/vitmatte-small-composition-1k"
        model = VitMatteForImageMatting.from_pretrained(model_name)
        self.assertIsNotNone(model)
NielsRogge's avatar
NielsRogge committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

    @unittest.skip(reason="ViTMatte does not support retaining gradient on attention logits")
    def test_retain_grad_hidden_states_attentions(self):
        pass

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states

            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [2, 2],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            print("Hello we're here")

            check_hidden_states_output(inputs_dict, config, model_class)


@require_torch
class VitMatteModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference(self):
        processor = VitMatteImageProcessor.from_pretrained("hustvl/vitmatte-small-composition-1k")
        model = VitMatteForImageMatting.from_pretrained("hustvl/vitmatte-small-composition-1k").to(torch_device)

        filepath = hf_hub_download(
            repo_id="hf-internal-testing/image-matting-fixtures", filename="image.png", repo_type="dataset"
        )
        image = Image.open(filepath).convert("RGB")
        filepath = hf_hub_download(
            repo_id="hf-internal-testing/image-matting-fixtures", filename="trimap.png", repo_type="dataset"
        )
        trimap = Image.open(filepath).convert("L")

        # prepare image + trimap for the model
        inputs = processor(images=image, trimaps=trimap, return_tensors="pt").to(torch_device)

        with torch.no_grad():
            alphas = model(**inputs).alphas

        expected_shape = torch.Size((1, 1, 640, 960))
        self.assertEqual(alphas.shape, expected_shape)

        expected_slice = torch.tensor(
            [[0.9977, 0.9987, 0.9990], [0.9980, 0.9998, 0.9998], [0.9983, 0.9998, 0.9998]], device=torch_device
        )
        self.assertTrue(torch.allclose(alphas[0, 0, :3, :3], expected_slice, atol=1e-4))