test_modeling_deit.py 16.3 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch DeiT model. """


import unittest
19
import warnings
NielsRogge's avatar
NielsRogge committed
20

21
from transformers import DeiTConfig
22
23
24
from transformers.testing_utils import (
    require_accelerate,
    require_torch,
25
26
    require_torch_accelerator,
    require_torch_fp16,
27
28
29
30
    require_vision,
    slow,
    torch_device,
)
31
from transformers.utils import cached_property, is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
32

Yih-Dar's avatar
Yih-Dar committed
33
34
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
35
from ...test_pipeline_mixin import PipelineTesterMixin
NielsRogge's avatar
NielsRogge committed
36
37
38
39


if is_torch_available():
    import torch
40
    from torch import nn
NielsRogge's avatar
NielsRogge committed
41
42
43
44

    from transformers import (
        DeiTForImageClassification,
        DeiTForImageClassificationWithTeacher,
NielsRogge's avatar
NielsRogge committed
45
        DeiTForMaskedImageModeling,
NielsRogge's avatar
NielsRogge committed
46
47
        DeiTModel,
    )
48
49
50
51
52
    from transformers.models.auto.modeling_auto import (
        MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
        MODEL_MAPPING_NAMES,
    )
NielsRogge's avatar
NielsRogge committed
53
54
55
56
57


if is_vision_available():
    from PIL import Image

58
    from transformers import DeiTImageProcessor
NielsRogge's avatar
NielsRogge committed
59
60
61
62
63
64
65
66
67
68
69
70
71


class DeiTModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
72
        num_hidden_layers=2,
NielsRogge's avatar
NielsRogge committed
73
74
75
76
77
78
79
80
81
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        num_labels=3,
        scope=None,
NielsRogge's avatar
NielsRogge committed
82
        encoder_stride=2,
83
84
        mask_ratio=0.5,
        attn_implementation="eager",
NielsRogge's avatar
NielsRogge committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.scope = scope
NielsRogge's avatar
NielsRogge committed
103
        self.encoder_stride = encoder_stride
104
        self.attn_implementation = attn_implementation
NielsRogge's avatar
NielsRogge committed
105

NielsRogge's avatar
NielsRogge committed
106
        # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
107
        num_patches = (image_size // patch_size) ** 2
NielsRogge's avatar
NielsRogge committed
108
        self.seq_length = num_patches + 2
109
110
111
        self.mask_ratio = mask_ratio
        self.num_masks = int(mask_ratio * self.seq_length)
        self.mask_length = num_patches
112

NielsRogge's avatar
NielsRogge committed
113
114
115
116
117
118
119
    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)

120
121
122
123
124
125
        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return DeiTConfig(
NielsRogge's avatar
NielsRogge committed
126
127
128
129
130
131
132
133
134
135
136
137
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
NielsRogge's avatar
NielsRogge committed
138
            encoder_stride=self.encoder_stride,
139
            attn_implementation=self.attn_implementation,
NielsRogge's avatar
NielsRogge committed
140
141
142
143
144
145
146
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = DeiTModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
147
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
NielsRogge's avatar
NielsRogge committed
148

NielsRogge's avatar
NielsRogge committed
149
150
151
152
153
154
    def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels):
        model = DeiTForMaskedImageModeling(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(
155
            result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size)
NielsRogge's avatar
NielsRogge committed
156
157
158
159
160
161
162
163
164
165
        )

        # test greyscale images
        config.num_channels = 1
        model = DeiTForMaskedImageModeling(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
166
        self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size))
NielsRogge's avatar
NielsRogge committed
167

NielsRogge's avatar
NielsRogge committed
168
169
170
171
172
173
174
175
    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        config.num_labels = self.type_sequence_label_size
        model = DeiTForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
176
177
178
179
180
181
182
183
184
185
        # test greyscale images
        config.num_channels = 1
        model = DeiTForImageClassification(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
186
187
188
189
190
191
192
193
194
195
196
197
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            pixel_values,
            labels,
        ) = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
198
class DeiTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
199
200
201
202
203
204
205
206
207
208
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as DeiT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (
        (
            DeiTModel,
            DeiTForImageClassification,
            DeiTForImageClassificationWithTeacher,
NielsRogge's avatar
NielsRogge committed
209
            DeiTForMaskedImageModeling,
NielsRogge's avatar
NielsRogge committed
210
211
212
213
        )
        if is_torch_available()
        else ()
    )
214
215
    pipeline_model_mapping = (
        {
216
            "image-feature-extraction": DeiTModel,
217
218
219
220
221
            "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher),
        }
        if is_torch_available()
        else {}
    )
NielsRogge's avatar
NielsRogge committed
222
223
224
225
226
227
228
229
230
231
232
233

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = DeiTModelTester(self)
        self.config_tester = ConfigTester(self, config_class=DeiTConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

NielsRogge's avatar
NielsRogge committed
234
    @unittest.skip(reason="DeiT does not use inputs_embeds")
NielsRogge's avatar
NielsRogge committed
235
236
237
238
239
240
241
242
    def test_inputs_embeds(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
243
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
NielsRogge's avatar
NielsRogge committed
244
            x = model.get_output_embeddings()
245
            self.assertTrue(x is None or isinstance(x, nn.Linear))
NielsRogge's avatar
NielsRogge committed
246
247
248
249
250

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
251
252
253
254
    def test_for_masked_image_modeling(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
255
256
257
    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
NielsRogge's avatar
NielsRogge committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

    # special case for DeiTForImageClassificationWithTeacher model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
                del inputs_dict["labels"]

        return inputs_dict

    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            # DeiTForImageClassificationWithTeacher supports inference-only
            if (
279
                model_class.__name__ in MODEL_MAPPING_NAMES.values()
NielsRogge's avatar
NielsRogge committed
280
281
282
283
284
285
286
287
288
289
                or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
            ):
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

290
291
292
293
294
295
296
297
298
    def test_training_gradient_checkpointing(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.model_tester.is_training:
            return

        config.use_cache = False
        config.return_dict = True

        for model_class in self.all_model_classes:
299
            if model_class.__name__ in MODEL_MAPPING_NAMES.values() or not model_class.supports_gradient_checkpointing:
300
301
302
303
304
                continue
            # DeiTForImageClassificationWithTeacher supports inference-only
            if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
                continue
            model = model_class(config)
305
            model.gradient_checkpointing_enable()
306
307
308
309
310
311
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

312
313
314
315
316
317
318
319
320
321
322
323
    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

324
325
326
327
328
329
330
331
332
333
334
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
            if (
335
                model_class.__name__
336
                not in [
337
338
                    *MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values(),
                    *MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES.values(),
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
                ]
                or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
            ):
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )

                    loss.backward()

NielsRogge's avatar
NielsRogge committed
374
375
    @slow
    def test_model_from_pretrained(self):
376
377
378
        model_name = "facebook/deit-base-distilled-patch16-224"
        model = DeiTModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
NielsRogge's avatar
NielsRogge committed
379
380
381
382


# We will verify our results on an image of cute cats
def prepare_img():
NielsRogge's avatar
NielsRogge committed
383
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
NielsRogge's avatar
NielsRogge committed
384
385
386
    return image


387
@require_torch
NielsRogge's avatar
NielsRogge committed
388
389
390
@require_vision
class DeiTModelIntegrationTest(unittest.TestCase):
    @cached_property
391
    def default_image_processor(self):
NielsRogge's avatar
NielsRogge committed
392
        return (
393
            DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224")
NielsRogge's avatar
NielsRogge committed
394
395
396
397
398
399
400
401
402
403
            if is_vision_available()
            else None
        )

    @slow
    def test_inference_image_classification_head(self):
        model = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224").to(
            torch_device
        )

404
        image_processor = self.default_image_processor
NielsRogge's avatar
NielsRogge committed
405
        image = prepare_img()
406
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
NielsRogge's avatar
NielsRogge committed
407
408

        # forward pass
409
410
        with torch.no_grad():
            outputs = model(**inputs)
NielsRogge's avatar
NielsRogge committed
411
412
413
414
415
416
417
418

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor([-1.0266, 0.1912, -1.2861]).to(torch_device)

        self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
419
420
421

    @slow
    @require_accelerate
422
423
    @require_torch_accelerator
    @require_torch_fp16
424
425
426
427
428
429
430
    def test_inference_fp16(self):
        r"""
        A small test to make sure that inference work in half precision without any problem.
        """
        model = DeiTModel.from_pretrained(
            "facebook/deit-base-distilled-patch16-224", torch_dtype=torch.float16, device_map="auto"
        )
431
        image_processor = self.default_image_processor
432
433

        image = prepare_img()
434
        inputs = image_processor(images=image, return_tensors="pt")
435
436
437
438
439
        pixel_values = inputs.pixel_values.to(torch_device)

        # forward pass to make sure inference works in fp16
        with torch.no_grad():
            _ = model(pixel_values)