test_modeling_speech_encoder_decoder.py 23.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2021 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import tempfile
import unittest

from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device

from .test_modeling_bert import BertModelTester
24
from .test_modeling_common import floats_tensor, ids_tensor, random_attention_mask
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from .test_modeling_speech_to_text import Speech2TextModelTester
from .test_modeling_speech_to_text_2 import Speech2Text2StandaloneDecoderModelTester
from .test_modeling_wav2vec2 import Wav2Vec2ModelTester


if is_torch_available():
    import numpy as np
    import torch

    from transformers import (
        BertLMHeadModel,
        Speech2Text2ForCausalLM,
        SpeechEncoderDecoderConfig,
        SpeechEncoderDecoderModel,
        Wav2Vec2Model,
    )
    from transformers.modeling_outputs import BaseModelOutput
    from transformers.models.speech_to_text.modeling_speech_to_text import Speech2TextEncoder


@require_torch
class EncoderDecoderMixin:
    def get_encoder_decoder_model(self, config, decoder_config):
        pass

    def prepare_config_and_inputs(self):
        pass

53
    def get_pretrained_model_and_inputs(self):
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        pass

    def check_encoder_decoder_model_from_pretrained_configs(
        self,
        config,
        attention_mask,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        input_values=None,
        input_features=None,
        **kwargs
    ):
        encoder_decoder_config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
        self.assertTrue(encoder_decoder_config.decoder.is_decoder)

        enc_dec_model = SpeechEncoderDecoderModel(encoder_decoder_config)
        enc_dec_model.to(torch_device)
        enc_dec_model.eval()

        self.assertTrue(enc_dec_model.config.is_encoder_decoder)

        outputs_encoder_decoder = enc_dec_model(
            input_values=input_values,
            input_features=input_features,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )

        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )

    def check_encoder_decoder_model(
        self,
        config,
        attention_mask,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        input_values=None,
        input_features=None,
        **kwargs
    ):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = SpeechEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        self.assertTrue(enc_dec_model.config.decoder.is_decoder)
        self.assertTrue(enc_dec_model.config.decoder.add_cross_attention)
        self.assertTrue(enc_dec_model.config.is_encoder_decoder)
        enc_dec_model.to(torch_device)
        outputs_encoder_decoder = enc_dec_model(
            input_values=input_values,
            input_features=input_features,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
            output_hidden_states=True,
        )
        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        encoder_outputs = BaseModelOutput(last_hidden_state=outputs_encoder_decoder.encoder_hidden_states[-1])
        outputs_encoder_decoder = enc_dec_model(
            encoder_outputs=encoder_outputs,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )

        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    def check_encoder_decoder_model_with_inputs(
        self,
        config,
        attention_mask,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        input_values=None,
        input_features=None,
        **kwargs
    ):
        inputs = input_values if input_features is None else input_features
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = SpeechEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)

        outputs_encoder_decoder = enc_dec_model(
            inputs,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
            output_hidden_states=True,
        )
        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )
        outputs_encoder_decoder_kwarg = enc_dec_model(
            inputs=inputs,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
            output_hidden_states=True,
        )
        self.assertEqual(
            outputs_encoder_decoder_kwarg["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    def check_encoder_decoder_model_from_pretrained(
        self,
        config,
        attention_mask,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        return_dict,
        input_values=None,
        input_features=None,
        **kwargs
    ):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model, "return_dict": return_dict}
        enc_dec_model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
        enc_dec_model.to(torch_device)
        outputs_encoder_decoder = enc_dec_model(
            input_values=input_values,
            input_features=input_features,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
            output_hidden_states=True,
            return_dict=True,
        )

        self.assertEqual(
            outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
        )

    def check_save_and_load(
        self,
        config,
        attention_mask,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        input_values=None,
        input_features=None,
        **kwargs
    ):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = SpeechEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)
        enc_dec_model.eval()
        with torch.no_grad():
            outputs = enc_dec_model(
                input_values=input_values,
                input_features=input_features,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
                decoder_attention_mask=decoder_attention_mask,
            )
            out_2 = outputs[0].cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            with tempfile.TemporaryDirectory() as tmpdirname:
                enc_dec_model.save_pretrained(tmpdirname)
                enc_dec_model = SpeechEncoderDecoderModel.from_pretrained(tmpdirname)
Patrick von Platen's avatar
Patrick von Platen committed
224
                enc_dec_model.to(torch_device)
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

                after_outputs = enc_dec_model(
                    input_values=input_values,
                    input_features=input_features,
                    decoder_input_ids=decoder_input_ids,
                    attention_mask=attention_mask,
                    decoder_attention_mask=decoder_attention_mask,
                )
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)

    def check_save_and_load_encoder_decoder_model(
        self,
        config,
        attention_mask,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        input_values=None,
        input_features=None,
        **kwargs
    ):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = SpeechEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)
        enc_dec_model.eval()
        with torch.no_grad():
            outputs = enc_dec_model(
                input_values=input_values,
                input_features=input_features,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
                decoder_attention_mask=decoder_attention_mask,
            )
            out_2 = outputs[0].cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            with tempfile.TemporaryDirectory() as encoder_tmp_dirname, tempfile.TemporaryDirectory() as decoder_tmp_dirname:
                enc_dec_model.encoder.save_pretrained(encoder_tmp_dirname)
                enc_dec_model.decoder.save_pretrained(decoder_tmp_dirname)
                SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(
                    encoder_pretrained_model_name_or_path=encoder_tmp_dirname,
                    decoder_pretrained_model_name_or_path=decoder_tmp_dirname,
                )

                after_outputs = enc_dec_model(
                    input_values=input_values,
                    input_features=input_features,
                    decoder_input_ids=decoder_input_ids,
                    attention_mask=attention_mask,
                    decoder_attention_mask=decoder_attention_mask,
                )
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)

    def check_encoder_decoder_model_output_attentions(
        self,
        config,
        attention_mask,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        labels=None,
        input_values=None,
        input_features=None,
        **kwargs
    ):
        # make the decoder inputs a different shape from the encoder inputs to harden the test
        decoder_input_ids = decoder_input_ids[:, :-1]
        decoder_attention_mask = decoder_attention_mask[:, :-1]
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = SpeechEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)
        outputs_encoder_decoder = enc_dec_model(
            input_values=input_values,
            input_features=input_features,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
            output_attentions=True,
        )

        inputs = input_values if input_features is None else input_features

        encoder_attentions = outputs_encoder_decoder["encoder_attentions"]
        self.assertEqual(len(encoder_attentions), config.num_hidden_layers)

        seq_len = enc_dec_model.encoder._get_feat_extract_output_lengths(inputs.shape[1])
        self.assertEqual(encoder_attentions[0].shape[-3:], (config.num_attention_heads, seq_len, seq_len))

        decoder_attentions = outputs_encoder_decoder["decoder_attentions"]
        num_decoder_layers = (
            decoder_config.num_decoder_layers
            if hasattr(decoder_config, "num_decoder_layers")
            else decoder_config.num_hidden_layers
        )
        self.assertEqual(len(decoder_attentions), num_decoder_layers)

        self.assertEqual(
            decoder_attentions[0].shape[-3:],
            (decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]),
        )

        cross_attentions = outputs_encoder_decoder["cross_attentions"]
        self.assertEqual(len(cross_attentions), num_decoder_layers)

        cross_attention_input_seq_len = decoder_input_ids.shape[-1]
        self.assertEqual(
            cross_attentions[0].shape[-3:],
            (decoder_config.num_attention_heads, cross_attention_input_seq_len, seq_len),
        )

    def check_encoder_decoder_model_generate(
        self, config, decoder_config, input_values=None, input_features=None, **kwargs
    ):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        enc_dec_model = SpeechEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)

348
349
350
351
352
        # make sure EOS token is set to None to prevent early stopping of generation
        enc_dec_model.config.eos_token_id = None
        if hasattr(enc_dec_model.config, "decoder") and hasattr(enc_dec_model.config.decoder, "eos_token_id"):
            enc_dec_model.config.decoder.eos_token_id = None

353
354
355
356
357
358
359
360
361
362
363
364
        inputs = input_values if input_features is None else input_features

        # Bert does not have a bos token id, so use pad_token_id instead
        generated_output = enc_dec_model.generate(
            inputs, decoder_start_token_id=enc_dec_model.config.decoder.pad_token_id
        )
        self.assertEqual(generated_output.shape, (inputs.shape[0],) + (decoder_config.max_length,))

    def test_encoder_decoder_model(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model(**input_ids_dict)

365
366
367
368
    def test_encoder_decoder_model_with_inputs(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_with_inputs(**input_ids_dict)

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    def test_encoder_decoder_model_from_pretrained_configs(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_from_pretrained_configs(**input_ids_dict)

    def test_encoder_decoder_model_from_pretrained(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=False)

    def test_encoder_decoder_model_from_pretrained_return_dict(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=True)

    def test_save_and_load_from_pretrained(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_save_and_load(**input_ids_dict)

    def test_save_and_load_from_encoder_decoder_pretrained(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_save_and_load_encoder_decoder_model(**input_ids_dict)

    def test_encoder_decoder_model_output_attentions(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_output_attentions(**input_ids_dict)

    def test_encoder_decoder_model_generate(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_generate(**input_ids_dict)

    @slow
    def test_real_model_save_load_from_pretrained(self):
399
        model_2, inputs = self.get_pretrained_model_and_inputs()
400
        model_2.to(torch_device)
401

402
        with torch.no_grad():
403
            outputs = model_2(**inputs)
404
405
406
407
408
409
410
411
            out_2 = outputs[0].cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            with tempfile.TemporaryDirectory() as tmp_dirname:
                model_2.save_pretrained(tmp_dirname)
                model_1 = SpeechEncoderDecoderModel.from_pretrained(tmp_dirname)
                model_1.to(torch_device)

412
                after_outputs = model_1(**inputs)
413
414
415
416
417
418
419
420
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)


@require_torch
class Wav2Vec2BertModelTest(EncoderDecoderMixin, unittest.TestCase):
421
422
    def get_pretrained_model_and_inputs(self):
        model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(
423
424
            "facebook/wav2vec2-base-960h", "bert-base-cased"
        )
425
426
427
428
429
430
431
432
433
434
435
436
437
        batch_size = 13
        input_values = floats_tensor([batch_size, 512], model.encoder.config.vocab_size)
        attention_mask = random_attention_mask([batch_size, 512])
        decoder_input_ids = ids_tensor([batch_size, 4], model.decoder.config.vocab_size)
        decoder_attention_mask = random_attention_mask([batch_size, 4])
        inputs = {
            "input_values": input_values,
            "attention_mask": attention_mask,
            "decoder_input_ids": decoder_input_ids,
            "decoder_attention_mask": decoder_attention_mask,
        }

        return model, inputs
438
439

    def get_encoder_decoder_model(self, config, decoder_config):
Patrick von Platen's avatar
Patrick von Platen committed
440
441
        encoder_model = Wav2Vec2Model(config).eval()
        decoder_model = BertLMHeadModel(decoder_config).eval()
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        bert_model_tester = BertModelTester(self)
        wav2vec2_model_tester = Wav2Vec2ModelTester(self)
        encoder_config_and_inputs = wav2vec2_model_tester.prepare_config_and_inputs()
        decoder_config_and_inputs = bert_model_tester.prepare_config_and_inputs_for_decoder()
        (
            config,
            input_values,
            input_mask,
        ) = encoder_config_and_inputs
        (
            decoder_config,
            decoder_input_ids,
            decoder_token_type_ids,
            decoder_input_mask,
            decoder_sequence_labels,
            decoder_token_labels,
            decoder_choice_labels,
            encoder_attention_mask,
            _,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        return {
            "config": config,
            "input_values": input_values,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_token_type_ids": decoder_token_type_ids,
            "decoder_attention_mask": decoder_input_mask,
            "decoder_sequence_labels": decoder_sequence_labels,
            "decoder_token_labels": decoder_token_labels,
            "decoder_choice_labels": decoder_choice_labels,
            "labels": decoder_token_labels,
        }


@require_torch
class Speech2TextBertModelTest(EncoderDecoderMixin, unittest.TestCase):
485
486
    def get_pretrained_model_and_inputs(self):
        model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(
487
488
            "facebook/s2t-small-librispeech-asr", "bert-base-cased"
        )
489
490
491
492
493
494
495
496
497
498
499
500
501
        batch_size = 13
        input_features = floats_tensor([batch_size, 7, 80], model.encoder.config.vocab_size)
        attention_mask = random_attention_mask([batch_size, 7])
        decoder_input_ids = ids_tensor([batch_size, 4], model.decoder.config.vocab_size)
        decoder_attention_mask = random_attention_mask([batch_size, 4])
        inputs = {
            "input_features": input_features,
            "attention_mask": attention_mask,
            "decoder_input_ids": decoder_input_ids,
            "decoder_attention_mask": decoder_attention_mask,
        }

        return model, inputs
502
503

    def get_encoder_decoder_model(self, config, decoder_config):
Patrick von Platen's avatar
Patrick von Platen committed
504
505
        encoder_model = Speech2TextEncoder(config).eval()
        decoder_model = BertLMHeadModel(decoder_config).eval()
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        bert_model_tester = BertModelTester(self)
        speech2text_model_tester = Speech2TextModelTester(self)
        encoder_config_and_inputs = speech2text_model_tester.prepare_config_and_inputs()
        decoder_config_and_inputs = bert_model_tester.prepare_config_and_inputs_for_decoder()

        config, inputs = encoder_config_and_inputs
        input_features = inputs["input_features"]
        input_mask = inputs["attention_mask"]

        (
            decoder_config,
            decoder_input_ids,
            decoder_token_type_ids,
            decoder_input_mask,
            decoder_sequence_labels,
            decoder_token_labels,
            decoder_choice_labels,
            encoder_attention_mask,
            _,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        return {
            "config": config,
            "input_features": input_features,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_token_type_ids": decoder_token_type_ids,
            "decoder_attention_mask": decoder_input_mask,
            "decoder_sequence_labels": decoder_sequence_labels,
            "decoder_token_labels": decoder_token_labels,
            "decoder_choice_labels": decoder_choice_labels,
            "labels": decoder_token_labels,
        }

    # can't save full model for now because Speech2TextModel != Speech2TextEncoder
    def test_encoder_decoder_model_from_pretrained_configs(self):
        pass

    # can't save full model for now because Speech2TextModel != Speech2TextEncoder
    def test_save_and_load_from_pretrained(self):
        pass

554
555
556
557
    # all published pretrained models are Speech2TextModel != Speech2TextEncoder
    def test_real_model_save_load_from_pretrained(self):
        pass

558
559
560
561

@require_torch
class Wav2Vec2Speech2Text2(EncoderDecoderMixin, unittest.TestCase):
    def get_encoder_decoder_model(self, config, decoder_config):
Patrick von Platen's avatar
Patrick von Platen committed
562
563
        encoder_model = Wav2Vec2Model(config).eval()
        decoder_model = Speech2Text2ForCausalLM(decoder_config).eval()
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        model_tester_encoder = Wav2Vec2ModelTester(self, batch_size=13)
        model_tester_decoder = Speech2Text2StandaloneDecoderModelTester(
            self, batch_size=13, d_model=32, max_position_embeddings=512
        )
        encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
        decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs()
        (
            config,
            input_values,
            input_mask,
        ) = encoder_config_and_inputs
        (decoder_config, decoder_input_ids, decoder_attention_mask, _) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        #  disable cache for now
        decoder_config.use_cache = False
        return {
            "config": config,
            "input_values": input_values,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_attention_mask": decoder_attention_mask,
        }

593
594
595
    # there are no published pretrained Speech2Text2ForCausalLM for now
    def test_real_model_save_load_from_pretrained(self):
        pass