test_modeling_superpoint.py 12.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import unittest
from typing import List

from transformers.models.superpoint.configuration_superpoint import SuperPointConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor


if is_torch_available():
    import torch

    from transformers import (
30
        SuperPointForKeypointDetection,
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    )

if is_vision_available():
    from PIL import Image

    from transformers import AutoImageProcessor


class SuperPointModelTester:
    def __init__(
        self,
        parent,
        batch_size=3,
        image_width=80,
        image_height=60,
        encoder_hidden_sizes: List[int] = [32, 32, 64, 64],
        decoder_hidden_size: int = 128,
        keypoint_decoder_dim: int = 65,
        descriptor_decoder_dim: int = 128,
        keypoint_threshold: float = 0.005,
        max_keypoints: int = -1,
        nms_radius: int = 4,
        border_removal_distance: int = 4,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_width = image_width
        self.image_height = image_height

        self.encoder_hidden_sizes = encoder_hidden_sizes
        self.decoder_hidden_size = decoder_hidden_size
        self.keypoint_decoder_dim = keypoint_decoder_dim
        self.descriptor_decoder_dim = descriptor_decoder_dim
        self.keypoint_threshold = keypoint_threshold
        self.max_keypoints = max_keypoints
        self.nms_radius = nms_radius
        self.border_removal_distance = border_removal_distance

    def prepare_config_and_inputs(self):
        # SuperPoint expects a grayscale image as input
        pixel_values = floats_tensor([self.batch_size, 3, self.image_height, self.image_width])
        config = self.get_config()
        return config, pixel_values

    def get_config(self):
        return SuperPointConfig(
            encoder_hidden_sizes=self.encoder_hidden_sizes,
            decoder_hidden_size=self.decoder_hidden_size,
            keypoint_decoder_dim=self.keypoint_decoder_dim,
            descriptor_decoder_dim=self.descriptor_decoder_dim,
            keypoint_threshold=self.keypoint_threshold,
            max_keypoints=self.max_keypoints,
            nms_radius=self.nms_radius,
            border_removal_distance=self.border_removal_distance,
        )

87
    def create_and_check_keypoint_detection(self, config, pixel_values):
88
        model = SuperPointForKeypointDetection(config=config)
89
90
91
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
92
93
94
95
        self.parent.assertEqual(result.keypoints.shape[0], self.batch_size)
        self.parent.assertEqual(result.keypoints.shape[-1], 2)

        result = model(pixel_values, output_hidden_states=True)
96
        self.parent.assertEqual(
97
            result.hidden_states[-1].shape,
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
            (
                self.batch_size,
                self.encoder_hidden_sizes[-1],
                self.image_height // 8,
                self.image_width // 8,
            ),
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class SuperPointModelTest(ModelTesterMixin, unittest.TestCase):
115
    all_model_classes = (SuperPointForKeypointDetection,) if is_torch_available() else ()
116
117
118
119
120
121
122
    all_generative_model_classes = () if is_torch_available() else ()

    fx_compatible = False
    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False
    has_attentions = False
123
    from_pretrained_id = "magic-leap-community/superpoint"
124
125
126

    def setUp(self):
        self.model_tester = SuperPointModelTester(self)
127
128
129
130
131
132
133
        self.config_tester = ConfigTester(
            self,
            config_class=SuperPointConfig,
            has_text_modality=False,
            hidden_size=37,
            common_properties=["encoder_hidden_sizes", "decoder_hidden_size"],
        )
134
135

    def test_config(self):
136
        self.config_tester.run_common_tests()
137

138
    @unittest.skip(reason="SuperPointForKeypointDetection does not use inputs_embeds")
139
140
141
    def test_inputs_embeds(self):
        pass

142
    @unittest.skip(reason="SuperPointForKeypointDetection does not support input and output embeddings")
143
    def test_model_get_set_embeddings(self):
144
145
        pass

146
    @unittest.skip(reason="SuperPointForKeypointDetection does not use feedforward chunking")
147
148
149
    def test_feed_forward_chunking(self):
        pass

150
    @unittest.skip(reason="SuperPointForKeypointDetection does not support training")
151
152
153
    def test_training(self):
        pass

154
    @unittest.skip(reason="SuperPointForKeypointDetection does not support training")
155
156
157
    def test_training_gradient_checkpointing(self):
        pass

158
    @unittest.skip(reason="SuperPointForKeypointDetection does not support training")
159
160
161
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

162
    @unittest.skip(reason="SuperPointForKeypointDetection does not support training")
163
164
165
166
167
168
169
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

    @unittest.skip(reason="SuperPoint does not output any loss term in the forward pass")
    def test_retain_grad_hidden_states_attentions(self):
        pass

170
    def test_keypoint_detection(self):
171
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
172
        self.model_tester.create_and_check_keypoint_detection(*config_and_inputs)
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.hidden_states

            # SuperPoint's feature maps are of shape (batch_size, num_channels, width, height)
            for i, conv_layer_size in enumerate(self.model_tester.encoder_hidden_sizes[:-1]):
                self.assertListEqual(
                    list(hidden_states[i].shape[-3:]),
                    [
                        conv_layer_size,
                        self.model_tester.image_height // (2 ** (i + 1)),
                        self.model_tester.image_width // (2 ** (i + 1)),
                    ],
                )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    @slow
    def test_model_from_pretrained(self):
222
223
        model = SuperPointForKeypointDetection.from_pretrained(self.from_pretrained_id)
        self.assertIsNotNone(model)
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

    def test_forward_labels_should_be_none(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                model_inputs = self._prepare_for_class(inputs_dict, model_class)
                # Provide an arbitrary sized Tensor as labels to model inputs
                model_inputs["labels"] = torch.rand((128, 128))

                with self.assertRaises(ValueError) as cm:
                    model(**model_inputs)
                self.assertEqual(ValueError, cm.exception.__class__)


def prepare_imgs():
    image1 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    image2 = Image.open("./tests/fixtures/tests_samples/COCO/000000004016.png")
    return [image1, image2]


@require_torch
@require_vision
class SuperPointModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_image_processor(self):
        return AutoImageProcessor.from_pretrained("magic-leap-community/superpoint") if is_vision_available() else None

    @slow
    def test_inference(self):
257
        model = SuperPointForKeypointDetection.from_pretrained("magic-leap-community/superpoint").to(torch_device)
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
        preprocessor = self.default_image_processor
        images = prepare_imgs()
        inputs = preprocessor(images=images, return_tensors="pt").to(torch_device)
        with torch.no_grad():
            outputs = model(**inputs)
        expected_number_keypoints_image0 = 567
        expected_number_keypoints_image1 = 830
        expected_max_number_keypoints = max(expected_number_keypoints_image0, expected_number_keypoints_image1)
        expected_keypoints_shape = torch.Size((len(images), expected_max_number_keypoints, 2))
        expected_scores_shape = torch.Size(
            (
                len(images),
                expected_max_number_keypoints,
            )
        )
        expected_descriptors_shape = torch.Size((len(images), expected_max_number_keypoints, 256))
        # Check output shapes
        self.assertEqual(outputs.keypoints.shape, expected_keypoints_shape)
        self.assertEqual(outputs.scores.shape, expected_scores_shape)
        self.assertEqual(outputs.descriptors.shape, expected_descriptors_shape)
        expected_keypoints_image0_values = torch.tensor([[480.0, 9.0], [494.0, 9.0], [489.0, 16.0]]).to(torch_device)
        expected_scores_image0_values = torch.tensor(
            [0.0064, 0.0137, 0.0589, 0.0723, 0.5166, 0.0174, 0.1515, 0.2054, 0.0334]
        ).to(torch_device)
        expected_descriptors_image0_value = torch.tensor(-0.1096).to(torch_device)
        predicted_keypoints_image0_values = outputs.keypoints[0, :3]
        predicted_scores_image0_values = outputs.scores[0, :9]
        predicted_descriptors_image0_value = outputs.descriptors[0, 0, 0]
        # Check output values
        self.assertTrue(
            torch.allclose(
                predicted_keypoints_image0_values,
                expected_keypoints_image0_values,
                atol=1e-4,
            )
        )
        self.assertTrue(torch.allclose(predicted_scores_image0_values, expected_scores_image0_values, atol=1e-4))
        self.assertTrue(
            torch.allclose(
                predicted_descriptors_image0_value,
                expected_descriptors_image0_value,
                atol=1e-4,
            )
        )
        # Check mask values
        self.assertTrue(outputs.mask[0, expected_number_keypoints_image0 - 1].item() == 1)
        self.assertTrue(outputs.mask[0, expected_number_keypoints_image0].item() == 0)
        self.assertTrue(torch.all(outputs.mask[0, : expected_number_keypoints_image0 - 1]))
        self.assertTrue(torch.all(torch.logical_not(outputs.mask[0, expected_number_keypoints_image0:])))
        self.assertTrue(torch.all(outputs.mask[1]))