run_summarization_finetuning.py 15.3 KB
Newer Older
Rémi Louf's avatar
Rémi Louf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2019 The HuggingFace Inc. team.
# Copyright (c) 2019 The HuggingFace Inc.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning seq2seq models for sequence generation."""

import argparse
Rémi Louf's avatar
Rémi Louf committed
19
import functools
Rémi Louf's avatar
Rémi Louf committed
20
21
22
23
24
25
26
27
28
import logging
import os
import random
import sys

import numpy as np
from tqdm import tqdm, trange
import torch
from torch.optim import Adam
29
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
Rémi Louf's avatar
Rémi Louf committed
30

Rémi Louf's avatar
Rémi Louf committed
31
32
33
34
from transformers import (
    AutoTokenizer,
    BertForMaskedLM,
    BertConfig,
Rémi Louf's avatar
Rémi Louf committed
35
    PreTrainedEncoderDecoder,
Rémi Louf's avatar
Rémi Louf committed
36
37
38
39
40
41
42
43
44
45
46
    Model2Model,
)

from utils_summarization import (
    CNNDailyMailDataset,
    encode_for_summarization,
    fit_to_block_size,
    build_lm_labels,
    build_mask,
    compute_token_type_ids,
)
Rémi Louf's avatar
Rémi Louf committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

logger = logging.getLogger(__name__)
logging.basicConfig(stream=sys.stdout, level=logging.INFO)


def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)


# ------------
# Load dataset
# ------------


def load_and_cache_examples(args, tokenizer):
Rémi Louf's avatar
Rémi Louf committed
64
    dataset = CNNDailyMailDataset(tokenizer, data_dir=args.data_dir)
Rémi Louf's avatar
Rémi Louf committed
65
66
67
    return dataset


Rémi Louf's avatar
Rémi Louf committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
def collate(data, tokenizer, block_size):
    """ List of tuple as an input. """
    # remove the files with empty an story/summary, encode and fit to block
    data = filter(lambda x: not (len(x[0]) == 0 or len(x[1]) == 0), data)
    data = [
        encode_for_summarization(story, summary, tokenizer) for story, summary in data
    ]
    data = [
        (
            fit_to_block_size(story, block_size, tokenizer.pad_token_id),
            fit_to_block_size(summary, block_size, tokenizer.pad_token_id),
        )
        for story, summary in data
    ]
Rémi Louf's avatar
Rémi Louf committed
82

Rémi Louf's avatar
Rémi Louf committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    stories = torch.tensor([story for story, summary in data])
    summaries = torch.tensor([summary for story, summary in data])
    encoder_token_type_ids = compute_token_type_ids(stories, tokenizer.cls_token_id)
    encoder_mask = build_mask(stories, tokenizer.pad_token_id)
    decoder_mask = build_mask(summaries, tokenizer.pad_token_id)
    lm_labels = build_lm_labels(summaries, tokenizer.pad_token_id)

    return (
        stories,
        summaries,
        encoder_token_type_ids,
        encoder_mask,
        decoder_mask,
        lm_labels,
    )
Rémi Louf's avatar
Rémi Louf committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115


# ----------
# Optimizers
# ----------


class BertSumOptimizer(object):
    """ Specific optimizer for BertSum.

    As described in [1], the authors fine-tune BertSum for abstractive
    summarization using two Adam Optimizers with different warm-up steps and
    learning rate. They also use a custom learning rate scheduler.

    [1] Liu, Yang, and Mirella Lapata. "Text summarization with pretrained encoders."
        arXiv preprint arXiv:1908.08345 (2019).
    """

Rémi Louf's avatar
Rémi Louf committed
116
    def __init__(self, model, lr, warmup_steps, beta_1=0.99, beta_2=0.999, eps=1e-8):
Rémi Louf's avatar
Rémi Louf committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        self.encoder = model.encoder
        self.decoder = model.decoder
        self.lr = lr
        self.warmup_steps = warmup_steps

        self.optimizers = {
            "encoder": Adam(
                model.encoder.parameters(),
                lr=lr["encoder"],
                betas=(beta_1, beta_2),
                eps=eps,
            ),
            "decoder": Adam(
                model.decoder.parameters(),
                lr=lr["decoder"],
                betas=(beta_1, beta_2),
                eps=eps,
            ),
        }

        self._step = 0

    def _update_rate(self, stack):
        return self.lr[stack] * min(
            self._step ** (-0.5), self._step * self.warmup_steps[stack] ** (-0.5)
        )

    def zero_grad(self):
        self.optimizer_decoder.zero_grad()
        self.optimizer_encoder.zero_grad()

    def step(self):
        self._step += 1
        for stack, optimizer in self.optimizers.items():
            new_rate = self._update_rate(stack)
            for param_group in optimizer.param_groups:
                param_group["lr"] = new_rate
            optimizer.step()


# ------------
# Train
# ------------


def train(args, model, tokenizer):
    """ Fine-tune the pretrained model on the corpus. """
    set_seed(args)

    # Load the data
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_dataset = load_and_cache_examples(args, tokenizer)
    train_sampler = RandomSampler(train_dataset)
Rémi Louf's avatar
Rémi Louf committed
170
    model_collate_fn = functools.partial(collate, tokenizer=tokenizer, block_size=512)
Rémi Louf's avatar
Rémi Louf committed
171
    train_dataloader = DataLoader(
Rémi Louf's avatar
Rémi Louf committed
172
173
174
175
        train_dataset,
        sampler=train_sampler,
        batch_size=args.train_batch_size,
        collate_fn=model_collate_fn,
Rémi Louf's avatar
Rémi Louf committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    )

    # Training schedule
    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = t_total // (
            len(train_dataloader) // args.gradient_accumulation_steps + 1
        )
    else:
        t_total = (
            len(train_dataloader)
            // args.gradient_accumulation_steps
            * args.num_train_epochs
        )

    # Prepare the optimizer
    lr = {"encoder": 0.002, "decoder": 0.2}
    warmup_steps = {"encoder": 20000, "decoder": 10000}
    optimizer = BertSumOptimizer(model, lr, warmup_steps)

    # Train
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info(
        "  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size
    )
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps
        # * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    model.zero_grad()
    train_iterator = trange(args.num_train_epochs, desc="Epoch", disable=True)

    global_step = 0
    tr_loss = 0.0
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=True)
        for step, batch in enumerate(epoch_iterator):
Rémi Louf's avatar
Rémi Louf committed
219
            source, target, encoder_token_type_ids, encoder_mask, decoder_mask, lm_labels = batch
Rémi Louf's avatar
Rémi Louf committed
220
221
222

            source = source.to(args.device)
            target = target.to(args.device)
Rémi Louf's avatar
Rémi Louf committed
223
224
225
226
            encoder_token_type_ids = encoder_token_type_ids.to(args.device)
            encoder_mask = encoder_mask.to(args.device)
            decoder_mask = decoder_mask.to(args.device)
            lm_labels = lm_labels.to(args.device)
Rémi Louf's avatar
Rémi Louf committed
227
228
229
230
231

            model.train()
            outputs = model(
                source,
                target,
Rémi Louf's avatar
Rémi Louf committed
232
233
234
235
                encoder_token_type_ids=encoder_token_type_ids,
                encoder_attention_mask=encoder_mask,
                decoder_attention_mask=decoder_mask,
                decoder_lm_labels=lm_labels,
Rémi Louf's avatar
Rémi Louf committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
            )

            loss = outputs[0]
            print(loss)
            if args.gradient_accumulation_steps > 1:
                loss /= args.gradient_accumulation_steps

            loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
                optimizer.step()
                model.zero_grad()
                global_step += 1

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break

        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    return global_step, tr_loss / global_step


# ------------
# Train
# ------------


def evaluate(args, model, tokenizer, prefix=""):
    set_seed(args)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True)
    eval_sampler = SequentialSampler(eval_dataset)
    eval_dataloader = DataLoader(
        eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size
    )

    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
    model.eval()

    for batch in tqdm(eval_dataloader, desc="Evaluating"):
286
        source, target, encoder_token_type_ids, encoder_mask, decoder_mask, lm_labels = batch
Rémi Louf's avatar
Rémi Louf committed
287
288
289
290
291
292

        source = source.to(args.device)
        target = target.to(args.device)
        encoder_token_type_ids = encoder_token_type_ids.to(args.device)
        encoder_mask = encoder_mask.to(args.device)
        decoder_mask = decoder_mask.to(args.device)
293
        lm_labels = lm_labels.to(args.device)
Rémi Louf's avatar
Rémi Louf committed
294
295
296
297
298

        with torch.no_grad():
            outputs = model(
                source,
                target,
Rémi Louf's avatar
Rémi Louf committed
299
300
301
                encoder_token_type_ids=encoder_token_type_ids,
                encoder_attention_mask=encoder_mask,
                decoder_attention_mask=decoder_mask,
302
                decoder_lm_labels=lm_labels,
Rémi Louf's avatar
Rémi Louf committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
            )
            lm_loss = outputs[0]
            eval_loss += lm_loss.mean().item()
        nb_eval_steps += 1

    eval_loss = eval_loss / nb_eval_steps
    perplexity = torch.exp(torch.tensor(eval_loss))

    result = {"perplexity": perplexity}

    # Save the evaluation's results
    output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    with open(output_eval_file, "w") as writer:
        logger.info("***** Eval results {} *****".format(prefix))
        for key in sorted(result.keys()):
            logger.info("  %s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))

    return result


def main():
    parser = argparse.ArgumentParser()

    # Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input training data file (a text file).",
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )

    # Optional parameters
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--do_evaluate",
        type=bool,
        default=False,
        help="Run model evaluation on out-of-sample data.",
    )
    parser.add_argument("--do_train", type=bool, default=False, help="Run training.")
    parser.add_argument(
        "--do_overwrite_output_dir",
        type=bool,
        default=False,
        help="Whether to overwrite the output dir.",
    )
    parser.add_argument(
        "--model_name_or_path",
        default="bert-base-cased",
        type=str,
        help="The model checkpoint to initialize the encoder and decoder's weights with.",
    )
    parser.add_argument(
        "--model_type",
        default="bert",
        type=str,
        help="The decoder architecture to be fine-tuned.",
    )
    parser.add_argument(
        "--max_grad_norm", default=1.0, type=float, help="Max gradient norm."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument(
        "--to_cpu", default=False, type=bool, help="Whether to force training on CPU."
    )
    parser.add_argument(
        "--num_train_epochs",
Rémi Louf's avatar
Rémi Louf committed
392
        default=10,
Rémi Louf's avatar
Rémi Louf committed
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
        type=int,
        help="Total number of training epochs to perform.",
    )
    parser.add_argument(
        "--per_gpu_train_batch_size",
        default=4,
        type=int,
        help="Batch size per GPU/CPU for training.",
    )
    parser.add_argument("--seed", default=42, type=int)
    args = parser.parse_args()

    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.do_overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --do_overwrite_output_dir to overwrite.".format(
                args.output_dir
            )
        )

    # Set up training device
    if args.to_cpu or not torch.cuda.is_available():
        args.device = torch.device("cpu")
        args.n_gpu = 0
    else:
        args.device = torch.device("cuda")
        args.n_gpu = torch.cuda.device_count()

Rémi Louf's avatar
Rémi Louf committed
425
    # Load pretrained model and tokenizer. The decoder's weights are randomly initialized.
Rémi Louf's avatar
Rémi Louf committed
426
    tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
Rémi Louf's avatar
Rémi Louf committed
427
428
429
430
431
    config = BertConfig.from_pretrained(args.model_name_or_path)
    decoder_model = BertForMaskedLM(config)
    model = Model2Model.from_pretrained(
        args.model_name_or_path, decoder_model=decoder_model
    )
Rémi Louf's avatar
Rémi Louf committed
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        0,
        args.device,
        args.n_gpu,
        False,
        False,
    )

    logger.info("Training/evaluation parameters %s", args)

    # Train the model
    model.to(args.device)
    if args.do_train:
        global_step, tr_loss = train(args, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

        if not os.path.exists(args.output_dir):
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)

        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
        torch.save(args, os.path.join(args.output_dir, "training_arguments.bin"))

    # Evaluate the model
    results = {}
    if args.do_evaluate:
        checkpoints = []
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            encoder_checkpoint = os.path.join(checkpoint, "encoder")
            decoder_checkpoint = os.path.join(checkpoint, "decoder")
Rémi Louf's avatar
Rémi Louf committed
478
            model = PreTrainedEncoderDecoder.from_pretrained(
Rémi Louf's avatar
Rémi Louf committed
479
480
481
482
483
484
485
486
487
488
                encoder_checkpoint, decoder_checkpoint
            )
            model.to(args.device)
            results = "placeholder"

    return results


if __name__ == "__main__":
    main()