"examples/vscode:/vscode.git/clone" did not exist on "dddd6b99272652f58b3d9f3a29d5c17cc4e119c9"
optimization_test.py 2.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import unittest

thomwolf's avatar
thomwolf committed
21
22
import torch

lukovnikov's avatar
lukovnikov committed
23
24
from pytorch_pretrained_bert import BertAdam
from pytorch_pretrained_bert.optimization import WarmupCosineWithWarmupRestartsSchedule
lukovnikov's avatar
lukovnikov committed
25
26
from matplotlib import pyplot as plt
import numpy as np
27
28
29
30
31
32
33
34
35
36

class OptimizationTest(unittest.TestCase):

    def assertListAlmostEqual(self, list1, list2, tol):
        self.assertEqual(len(list1), len(list2))
        for a, b in zip(list1, list2):
            self.assertAlmostEqual(a, b, delta=tol)

    def test_adam(self):
        w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True)
thomwolf's avatar
thomwolf committed
37
        target = torch.tensor([0.4, 0.2, -0.5])
thomwolf's avatar
thomwolf committed
38
        criterion = torch.nn.MSELoss()
thomwolf's avatar
thomwolf committed
39
        # No warmup, constant schedule, no gradient clipping
thomwolf's avatar
thomwolf committed
40
        optimizer = BertAdam(params=[w], lr=2e-1,
thomwolf's avatar
thomwolf committed
41
                                          weight_decay=0.0,
thomwolf's avatar
thomwolf committed
42
                                          max_grad_norm=-1)
43
        for _ in range(100):
thomwolf's avatar
thomwolf committed
44
            loss = criterion(w, target)
45
46
            loss.backward()
            optimizer.step()
thomwolf's avatar
thomwolf committed
47
48
            w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
            w.grad.zero_()
49
50
51
        self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2)


lukovnikov's avatar
lukovnikov committed
52
53
class WarmupCosineWithRestartsTest(unittest.TestCase):
    def test_it(self):
lukovnikov's avatar
lukovnikov committed
54
        m = WarmupCosineWithWarmupRestartsSchedule(warmup=0.05, t_total=1000, cycles=5)
lukovnikov's avatar
lukovnikov committed
55
56
        x = np.arange(0, 1000)
        y = [m.get_lr(xe) for xe in x]
lukovnikov's avatar
lukovnikov committed
57
        plt.plot(y)
lukovnikov's avatar
lukovnikov committed
58
59
60
61
62
63
64
65
        plt.show(block=False)
        y = np.asarray(y)
        expected_zeros = y[[0, 200, 400, 600, 800]]
        print(expected_zeros)
        expected_ones = y[[50, 250, 450, 650, 850]]
        print(expected_ones)
        self.assertTrue(np.allclose(expected_ones, 1))
        self.assertTrue(np.allclose(expected_zeros, 0))
lukovnikov's avatar
lukovnikov committed
66
67
68
69




70
71
if __name__ == "__main__":
    unittest.main()