test_modeling_tf_xlnet.py 21.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
import inspect
thomwolf's avatar
thomwolf committed
18
import random
19
import unittest
thomwolf's avatar
thomwolf committed
20

21
from transformers import XLNetConfig, is_tf_available
22
from transformers.testing_utils import require_tf, slow
thomwolf's avatar
thomwolf committed
23

Yih-Dar's avatar
Yih-Dar committed
24
25
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
Aymeric Augustin's avatar
Aymeric Augustin committed
26
27


thomwolf's avatar
thomwolf committed
28
29
30
if is_tf_available():
    import tensorflow as tf

Sylvain Gugger's avatar
Sylvain Gugger committed
31
    from transformers.models.xlnet.modeling_tf_xlnet import (
32
33
34
        TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
        TFXLNetForMultipleChoice,
        TFXLNetForQuestionAnsweringSimple,
35
36
        TFXLNetForSequenceClassification,
        TFXLNetForTokenClassification,
37
38
        TFXLNetLMHeadModel,
        TFXLNetModel,
39
40
    )

41

42
43
class TFXLNetModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
44
45
        self,
        parent,
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.mem_len = 10
        # self.key_len = seq_length + mem_len
        self.clamp_len = -1
        self.reuse_len = 15
        self.is_training = True
        self.use_labels = True
        self.vocab_size = 99
        self.cutoffs = [10, 50, 80]
        self.hidden_size = 32
        self.num_attention_heads = 4
        self.d_inner = 128
        self.num_hidden_layers = 5
        self.type_sequence_label_size = 2
        self.untie_r = True
        self.bi_data = False
        self.same_length = False
        self.initializer_range = 0.05
        self.seed = 1
        self.type_vocab_size = 2
        self.bos_token_id = 1
        self.eos_token_id = 2
        self.pad_token_id = 5
72
        self.num_choices = 4
73
74
75
76
77

    def prepare_config_and_inputs(self):
        input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        segment_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
78
        input_mask = random_attention_mask([self.batch_size, self.seq_length], dtype=tf.float32)
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

        input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size)
        perm_mask = tf.zeros((self.batch_size, self.seq_length + 1, self.seq_length), dtype=tf.float32)
        perm_mask_last = tf.ones((self.batch_size, self.seq_length + 1, 1), dtype=tf.float32)
        perm_mask = tf.concat([perm_mask, perm_mask_last], axis=-1)
        # perm_mask[:, :, -1] = 1.0  # Previous tokens don't see last token
        target_mapping = tf.zeros((self.batch_size, 1, self.seq_length), dtype=tf.float32)
        target_mapping_last = tf.ones((self.batch_size, 1, 1), dtype=tf.float32)
        target_mapping = tf.concat([target_mapping, target_mapping_last], axis=-1)
        # target_mapping[:, 0, -1] = 1.0  # predict last token

        sequence_labels = None
        lm_labels = None
        is_impossible_labels = None
        if self.use_labels:
            lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32)

        config = XLNetConfig(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            n_head=self.num_attention_heads,
            d_inner=self.d_inner,
            n_layer=self.num_hidden_layers,
            untie_r=self.untie_r,
            mem_len=self.mem_len,
            clamp_len=self.clamp_len,
            same_length=self.same_length,
            reuse_len=self.reuse_len,
            bi_data=self.bi_data,
            initializer_range=self.initializer_range,
            num_labels=self.type_sequence_label_size,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            eos_token_id=self.eos_token_id,
115
        )
thomwolf's avatar
thomwolf committed
116

117
        return (
118
119
120
121
122
123
124
125
126
127
128
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
129
        )
thomwolf's avatar
thomwolf committed
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    def set_seed(self):
        random.seed(self.seed)
        tf.random.set_seed(self.seed)

    def create_and_check_xlnet_base_model(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
    ):
        model = TFXLNetModel(config)

        inputs = {"input_ids": input_ids_1, "input_mask": input_mask, "token_type_ids": segment_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
152
        result = model(inputs)
153
154

        inputs = [input_ids_1, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
155
        result = model(inputs)
156

157
        config.use_mems_eval = False
158
159
160
161
        model = TFXLNetModel(config)
        no_mems_outputs = model(inputs)
        self.parent.assertEqual(len(no_mems_outputs), 1)

162
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
163
        self.parent.assertListEqual(
164
165
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
166
        )
thomwolf's avatar
thomwolf committed
167

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    def create_and_check_xlnet_lm_head(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
    ):
        model = TFXLNetLMHeadModel(config)
thomwolf's avatar
thomwolf committed
183

184
        inputs_1 = {"input_ids": input_ids_1, "token_type_ids": segment_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
185
        all_logits_1, mems_1 = model(inputs_1).to_tuple()
186

187
        inputs_2 = {"input_ids": input_ids_2, "mems": mems_1, "token_type_ids": segment_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
188
        all_logits_2, mems_2 = model(inputs_2).to_tuple()
189

190
        inputs_3 = {"input_ids": input_ids_q, "perm_mask": perm_mask, "target_mapping": target_mapping}
Sylvain Gugger's avatar
Sylvain Gugger committed
191
        logits, _ = model(inputs_3).to_tuple()
192

193
        self.parent.assertEqual(all_logits_1.shape, (self.batch_size, self.seq_length, self.vocab_size))
194
        self.parent.assertListEqual(
195
196
            [mem.shape for mem in mems_1],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
197
        )
198
        self.parent.assertEqual(all_logits_2.shape, (self.batch_size, self.seq_length, self.vocab_size))
199
        self.parent.assertListEqual(
200
201
            [mem.shape for mem in mems_2],
            [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
202
        )
203

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    def create_and_check_xlnet_qa(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
    ):
        model = TFXLNetForQuestionAnsweringSimple(config)

        inputs = {"input_ids": input_ids_1, "attention_mask": input_mask, "token_type_ids": segment_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
221
        result = model(inputs)
222

223
224
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
225
        self.parent.assertListEqual(
226
227
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
228
        )
229

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    def create_and_check_xlnet_sequence_classif(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
    ):
        model = TFXLNetForSequenceClassification(config)

Sylvain Gugger's avatar
Sylvain Gugger committed
246
        result = model(input_ids_1)
247

248
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
249
        self.parent.assertListEqual(
250
251
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
252
        )
253

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
    def create_and_check_xlnet_for_token_classification(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
    ):
        config.num_labels = input_ids_1.shape[1]
        model = TFXLNetForTokenClassification(config)
        inputs = {
            "input_ids": input_ids_1,
            "attention_mask": input_mask,
            # 'token_type_ids': token_type_ids
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
275
        result = model(inputs)
276
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, config.num_labels))
277
        self.parent.assertListEqual(
278
279
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
280
        )
281

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    def create_and_check_xlnet_for_multiple_choice(
        self,
        config,
        input_ids_1,
        input_ids_2,
        input_ids_q,
        perm_mask,
        input_mask,
        target_mapping,
        segment_ids,
        lm_labels,
        sequence_labels,
        is_impossible_labels,
    ):
        config.num_choices = self.num_choices
        model = TFXLNetForMultipleChoice(config=config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids_1, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(segment_ids, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
306
        result = model(inputs)
Julien Plu's avatar
Julien Plu committed
307

308
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
Julien Plu's avatar
Julien Plu committed
309
        self.parent.assertListEqual(
310
311
            [mem.shape for mem in result.mems],
            [(self.seq_length, self.batch_size * self.num_choices, self.hidden_size)] * self.num_hidden_layers,
Julien Plu's avatar
Julien Plu committed
312
        )
313

314
315
316
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
317
318
319
320
321
322
323
324
325
326
327
            config,
            input_ids_1,
            input_ids_2,
            input_ids_q,
            perm_mask,
            input_mask,
            target_mapping,
            segment_ids,
            lm_labels,
            sequence_labels,
            is_impossible_labels,
328
329
330
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids_1}
        return config, inputs_dict
331
332


333
334
335
336
337
338
339
340
341
@require_tf
class TFXLNetModelTest(TFModelTesterMixin, unittest.TestCase):
    all_model_classes = (
        (
            TFXLNetModel,
            TFXLNetLMHeadModel,
            TFXLNetForSequenceClassification,
            TFXLNetForTokenClassification,
            TFXLNetForQuestionAnsweringSimple,
342
            TFXLNetForMultipleChoice,
343
344
345
346
347
348
349
        )
        if is_tf_available()
        else ()
    )
    all_generative_model_classes = (
        (TFXLNetLMHeadModel,) if is_tf_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable
350
    test_head_masking = False
351
    test_onnx = False
thomwolf's avatar
thomwolf committed
352
353

    def setUp(self):
354
        self.model_tester = TFXLNetModelTester(self)
thomwolf's avatar
thomwolf committed
355
356
357
358
359
360
361
362
363
364
365
366
367
        self.config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_xlnet_base_model(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_base_model(*config_and_inputs)

    def test_xlnet_lm_head(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
368
        self.model_tester.create_and_check_xlnet_lm_head(*config_and_inputs)
thomwolf's avatar
thomwolf committed
369
370
371
372
373
374

    def test_xlnet_sequence_classif(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_sequence_classif(*config_and_inputs)

375
376
377
378
    def test_xlnet_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_for_token_classification(*config_and_inputs)

thomwolf's avatar
thomwolf committed
379
380
381
382
383
    def test_xlnet_qa(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_qa(*config_and_inputs)

384
385
386
387
    def test_xlnet_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlnet_for_multiple_choice(*config_and_inputs)

388
    @slow
thomwolf's avatar
thomwolf committed
389
    def test_model_from_pretrained(self):
390
        for model_name in TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
391
            model = TFXLNetModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
392
            self.assertIsNotNone(model)
patrickvonplaten's avatar
patrickvonplaten committed
393

394
395
396
397
398
399
400
401
402
    # overwrite since `TFXLNetLMHeadModel` doesn't cut logits/labels
    def test_loss_computation(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            if getattr(model, "hf_compute_loss", None):
                # The number of elements in the loss should be the same as the number of elements in the label
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                added_label = prepared_for_class[
403
                    sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True)[0]
404
                ]
Matt's avatar
Matt committed
405
                expected_loss_size = added_label.shape.as_list()[:1]
406
407
408
409
410
411
412
413
414
415
416
417
418

                # `TFXLNetLMHeadModel` doesn't cut logits/labels
                # if model.__class__ in get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING):
                #     # if loss is causal lm loss, labels are shift, so that one label per batch
                #     # is cut
                #     loss_size = loss_size - self.model_tester.batch_size

                # Test that model correctly compute the loss with kwargs
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                input_name = "input_ids" if "input_ids" in prepared_for_class else "pixel_values"
                input_ids = prepared_for_class.pop(input_name)

                loss = model(input_ids, **prepared_for_class)[0]
419
                self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
420
421
422
423

                # Test that model correctly compute the loss with a dict
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
                loss = model(prepared_for_class)[0]
424
                self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

                # Test that model correctly compute the loss with a tuple
                prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)

                # Get keys that were added with the _prepare_for_class function
                label_keys = prepared_for_class.keys() - inputs_dict.keys()
                signature = inspect.signature(model.call).parameters
                signature_names = list(signature.keys())

                # Create a dictionary holding the location of the tensors in the tuple
                tuple_index_mapping = {0: input_name}
                for label_key in label_keys:
                    label_key_index = signature_names.index(label_key)
                    tuple_index_mapping[label_key_index] = label_key
                sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
                # Initialize a list with their default values, update the values and convert to a tuple
                list_input = []

                for name in signature_names:
                    if name != "kwargs":
                        list_input.append(signature[name].default)

                for index, value in sorted_tuple_index_mapping:
                    list_input[index] = prepared_for_class[value]

                tuple_input = tuple(list_input)

                # Send to model
                loss = model(tuple_input[:-1])[0]

455
                self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
456

patrickvonplaten's avatar
patrickvonplaten committed
457

458
@require_tf
patrickvonplaten's avatar
patrickvonplaten committed
459
460
461
462
class TFXLNetModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_xlnet_base_cased(self):
        model = TFXLNetLMHeadModel.from_pretrained("xlnet-base-cased")
463
        # fmt: off
patrickvonplaten's avatar
patrickvonplaten committed
464
465
466
        input_ids = tf.convert_to_tensor(
            [
                [
467
                    67, 2840, 19, 18, 1484, 20, 965, 29077, 8719, 1273, 21, 45, 273, 17, 10, 15048, 28, 27511, 21, 4185, 11, 41, 2444, 9, 32, 1025, 20, 8719, 26, 23, 673, 966, 19, 29077, 20643, 27511, 20822, 20643, 19, 17, 6616, 17511, 18, 8978, 20, 18, 777, 9, 19233, 1527, 17669, 19, 24, 673, 17, 28756, 150, 12943, 4354, 153, 27, 442, 37, 45, 668, 21, 24, 256, 20, 416, 22, 2771, 4901, 9, 12943, 4354, 153, 51, 24, 3004, 21, 28142, 23, 65, 20, 18, 416, 34, 24, 2958, 22947, 9, 1177, 45, 668, 3097, 13768, 23, 103, 28, 441, 148, 48, 20522, 19, 12943, 4354, 153, 12860, 34, 18, 326, 27, 17492, 684, 21, 6709, 9, 8585, 123, 266, 19, 12943, 4354, 153, 6872, 24, 3004, 20, 18, 9225, 2198, 19, 12717, 103, 22, 401, 24, 6348, 9, 12943, 4354, 153, 1068, 2768, 2286, 19, 33, 104, 19, 176, 24, 9313, 19, 20086, 28, 45, 10292, 9, 4, 3,
patrickvonplaten's avatar
patrickvonplaten committed
468
469
470
471
                ]
            ],
            dtype=tf.int32,
        )
472
473
        # fmt: on

patrickvonplaten's avatar
patrickvonplaten committed
474
475
476
477
478
479
480
481
482
483
484
        #  In 1991, the remains of Russian Tsar Nicholas II and his family
        #  (except for Alexei and Maria) are discovered.
        #  The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the
        #  remainder of the story. 1883 Western Siberia,
        #  a young Grigori Rasputin is asked by his father and a group of men to perform magic.
        #  Rasputin has a vision and denounces one of the men as a horse thief. Although his
        #  father initially slaps him for making such an accusation, Rasputin watches as the
        #  man is chased outside and beaten. Twenty years later, Rasputin sees a vision of
        #  the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous,
        #  with people, even a bishop, begging for his blessing. """

485
        # fmt: off
patrickvonplaten's avatar
patrickvonplaten committed
486
        expected_output_ids = [
487
            67, 2840, 19, 18, 1484, 20, 965, 29077, 8719, 1273, 21, 45, 273, 17, 10, 15048, 28, 27511, 21, 4185, 11, 41, 2444, 9, 32, 1025, 20, 8719, 26, 23, 673, 966, 19, 29077, 20643, 27511, 20822, 20643, 19, 17, 6616, 17511, 18, 8978, 20, 18, 777, 9, 19233, 1527, 17669, 19, 24, 673, 17, 28756, 150, 12943, 4354, 153, 27, 442, 37, 45, 668, 21, 24, 256, 20, 416, 22, 2771, 4901, 9, 12943, 4354, 153, 51, 24, 3004, 21, 28142, 23, 65, 20, 18, 416, 34, 24, 2958, 22947, 9, 1177, 45, 668, 3097, 13768, 23, 103, 28, 441, 148, 48, 20522, 19, 12943, 4354, 153, 12860, 34, 18, 326, 27, 17492, 684, 21, 6709, 9, 8585, 123, 266, 19, 12943, 4354, 153, 6872, 24, 3004, 20, 18, 9225, 2198, 19, 12717, 103, 22, 401, 24, 6348, 9, 12943, 4354, 153, 1068, 2768, 2286, 19, 33, 104, 19, 176, 24, 9313, 19, 20086, 28, 45, 10292, 9, 4, 3, 19, 12943, 4354, 153, 27, 442, 22, 2771, 4901, 9, 69, 27, 442, 22, 2771, 24, 11335, 20, 18, 9225, 2198, 9, 69, 27, 442, 22, 2771, 24, 11335, 20, 18, 9225, 2198, 9, 69, 27, 442, 22, 2771,
patrickvonplaten's avatar
patrickvonplaten committed
488
        ]
489
        # fmt: on
patrickvonplaten's avatar
patrickvonplaten committed
490
491
492
493
494
495
496
497
        #  In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria)
        #  are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich,
        #  narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin
        #  is asked by his father and a group of men to perform magic. Rasputin has a vision and
        #  denounces one of the men as a horse thief. Although his father initially slaps
        #  him for making such an accusation, Rasputin watches as the man is chased outside and beaten.
        #  Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest.
        #  Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing.
498
499
        #  <sep><cls>, Rasputin is asked to perform magic. He is asked to perform a ritual of the Virgin Mary.
        #  He is asked to perform a ritual of the Virgin Mary. He is asked to perform
patrickvonplaten's avatar
patrickvonplaten committed
500
501
502

        output_ids = model.generate(input_ids, max_length=200, do_sample=False)

503
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)