VQGAN_CLIP.py 11 KB
Newer Older
1
2
3
import os
from glob import glob

4
import imageio
5
6
7
8
9
import torch
import torchvision
import wandb
from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan
from loaders import load_vqgan
10
11
12
from PIL import Image
from torch import nn

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from transformers import CLIPModel, CLIPTokenizerFast
from utils import get_device, get_timestamp, show_pil


class ProcessorGradientFlow:
    """
    This wraps the huggingface CLIP processor to allow backprop through the image processing step.
    The original processor forces conversion to PIL images, which is faster for image processing but breaks gradient flow.
    We call the original processor to get the text embeddings, but use our own image processing to keep images as torch tensors.
    """

    def __init__(self, device: str = "cpu", clip_model: str = "openai/clip-vit-large-patch14") -> None:
        self.device = device
        self.tokenizer = CLIPTokenizerFast.from_pretrained(clip_model)
        self.image_mean = [0.48145466, 0.4578275, 0.40821073]
        self.image_std = [0.26862954, 0.26130258, 0.27577711]
        self.normalize = torchvision.transforms.Normalize(self.image_mean, self.image_std)
        self.resize = torchvision.transforms.Resize(224)
        self.center_crop = torchvision.transforms.CenterCrop(224)

    def preprocess_img(self, images):
        images = self.resize(images)
        images = self.center_crop(images)
        images = self.normalize(images)
        return images

    def __call__(self, text=None, images=None, **kwargs):
        encoding = self.tokenizer(text=text, **kwargs)
        encoding["pixel_values"] = self.preprocess_img(images)
        encoding = {key: value.to(self.device) for (key, value) in encoding.items()}
        return encoding


class VQGAN_CLIP(nn.Module):
    def __init__(
        self,
        iterations=10,
        lr=0.01,
        vqgan=None,
        vqgan_config=None,
        vqgan_checkpoint=None,
        clip=None,
        clip_preprocessor=None,
        device=None,
        log=False,
        save_vector=True,
        return_val="image",
        quantize=True,
        save_intermediate=False,
        show_intermediate=False,
        make_grid=False,
    ) -> None:
        """
        Instantiate a VQGAN_CLIP model. If you want to use a custom VQGAN model, pass it as vqgan.
        """
        super().__init__()
        self.latent = None
        self.device = device if device else get_device()
        if vqgan:
            self.vqgan = vqgan
        else:
            self.vqgan = load_vqgan(self.device, conf_path=vqgan_config, ckpt_path=vqgan_checkpoint)
        self.vqgan.eval()
        if clip:
            self.clip = clip
        else:
            self.clip = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
        self.clip.to(self.device)
        self.clip_preprocessor = ProcessorGradientFlow(device=self.device)

        self.iterations = iterations
        self.lr = lr
        self.log = log
        self.make_grid = make_grid
        self.return_val = return_val
        self.quantize = quantize
        self.latent_dim = self.vqgan.decoder.z_shape

    def make_animation(self, input_path=None, output_path=None, total_duration=5, extend_frames=True):
        """
        Make an animation from the intermediate images saved during generation.
        By default, uses the images from the most recent generation created by the generate function.
        If you want to use images from a different generation, pass the path to the folder containing the images as input_path.
        """
        images = []
        if output_path is None:
            output_path = "./animation.gif"
        if input_path is None:
            input_path = self.save_path
102
        paths = sorted(glob(input_path + "/*"))
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
        if not len(paths):
            raise ValueError(
                "No images found in save path, aborting (did you pass save_intermediate=True to the generate"
                " function?)"
            )
        if len(paths) == 1:
            print("Only one image found in save path, (did you pass save_intermediate=True to the generate function?)")
        frame_duration = total_duration / len(paths)
        durations = [frame_duration] * len(paths)
        if extend_frames:
            durations[0] = 1.5
            durations[-1] = 3
        for file_name in paths:
            if file_name.endswith(".png"):
                images.append(imageio.imread(file_name))
        imageio.mimsave(output_path, images, duration=durations)
        print(f"gif saved to {output_path}")

    def _get_latent(self, path=None, img=None):
        if not (path or img):
            raise ValueError("Input either path or tensor")
        if img is not None:
            raise NotImplementedError
        x = preprocess(Image.open(path), target_image_size=256).to(self.device)
        x_processed = preprocess_vqgan(x)
        z, *_ = self.vqgan.encode(x_processed)
        return z

    def _add_vector(self, transform_vector):
        """Add a vector transform to the base latent and returns the resulting image."""
        base_latent = self.latent.detach().requires_grad_()
        trans_latent = base_latent + transform_vector
        if self.quantize:
            z_q, *_ = self.vqgan.quantize(trans_latent)
        else:
            z_q = trans_latent
        return self.vqgan.decode(z_q)

    def _get_clip_similarity(self, prompts, image, weights=None):
        clip_inputs = self.clip_preprocessor(text=prompts, images=image, return_tensors="pt", padding=True)
        clip_outputs = self.clip(**clip_inputs)
        similarity_logits = clip_outputs.logits_per_image
        if weights is not None:
            similarity_logits = similarity_logits * weights
        return similarity_logits.sum()

    def _get_clip_loss(self, pos_prompts, neg_prompts, image):
        pos_logits = self._get_clip_similarity(pos_prompts["prompts"], image, weights=(1 / pos_prompts["weights"]))
        if neg_prompts:
            neg_logits = self._get_clip_similarity(neg_prompts["prompts"], image, weights=neg_prompts["weights"])
        else:
            neg_logits = torch.tensor([1], device=self.device)
        loss = -torch.log(pos_logits) + torch.log(neg_logits)
        return loss

    def _optimize_CLIP(self, original_img, pos_prompts, neg_prompts):
        vector = torch.randn_like(self.latent, requires_grad=True, device=self.device)
        optim = torch.optim.Adam([vector], lr=self.lr)

        for i in range(self.iterations):
            optim.zero_grad()
            transformed_img = self._add_vector(vector)
            processed_img = loop_post_process(transformed_img)
            clip_loss = self._get_CLIP_loss(pos_prompts, neg_prompts, processed_img)
            print("CLIP loss", clip_loss)
            if self.log:
                wandb.log({"CLIP Loss": clip_loss})
            clip_loss.backward(retain_graph=True)
            optim.step()
            if self.return_val == "image":
                yield custom_to_pil(transformed_img[0])
            else:
                yield vector

    def _init_logging(self, positive_prompts, negative_prompts, image_path):
        wandb.init(reinit=True, project="face-editor")
        wandb.config.update({"Positive Prompts": positive_prompts})
        wandb.config.update({"Negative Prompts": negative_prompts})
181
        wandb.config.update({"lr": self.lr, "iterations": self.iterations})
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
        if image_path:
            image = Image.open(image_path)
            image = image.resize((256, 256))
            wandb.log("Original Image", wandb.Image(image))

    def process_prompts(self, prompts):
        if not prompts:
            return []
        processed_prompts = []
        weights = []
        if isinstance(prompts, str):
            prompts = [prompt.strip() for prompt in prompts.split("|")]
        for prompt in prompts:
            if isinstance(prompt, (tuple, list)):
                processed_prompt = prompt[0]
                weight = float(prompt[1])
            elif ":" in prompt:
                processed_prompt, weight = prompt.split(":")
                weight = float(weight)
            else:
                processed_prompt = prompt
                weight = 1.0
            processed_prompts.append(processed_prompt)
            weights.append(weight)
        return {
            "prompts": processed_prompts,
            "weights": torch.tensor(weights, device=self.device),
        }

    def generate(
        self,
        pos_prompts,
        neg_prompts=None,
        image_path=None,
        show_intermediate=True,
        save_intermediate=False,
        show_final=True,
        save_final=True,
        save_path=None,
    ):
        """Generate an image from the given prompts.
        If image_path is provided, the image is used as a starting point for the optimization.
        If image_path is not provided, a random latent vector is used as a starting point.
        You must provide at least one positive prompt, and optionally provide negative prompts.
        Prompts must be formatted in one of the following ways:
        - A single prompt as a string, e.g "A smiling woman"
        - A set of prompts separated by pipes: "A smiling woman | a woman with brown hair"
        - A set of prompts and their weights separated by colons: "A smiling woman:1 | a woman with brown hair: 3" (default weight is 1)
        - A list of prompts, e.g ["A smiling woman", "a woman with brown hair"]
        - A list of prompts and weights, e.g [("A smiling woman", 1), ("a woman with brown hair", 3)]
        """
        if image_path:
            self.latent = self._get_latent(image_path)
        else:
            self.latent = torch.randn(self.latent_dim, device=self.device)
        if self.log:
            self._init_logging(pos_prompts, neg_prompts, image_path)

        assert pos_prompts, "You must provide at least one positive prompt."
        pos_prompts = self.process_prompts(pos_prompts)
        neg_prompts = self.process_prompts(neg_prompts)
        if save_final and save_path is None:
            save_path = os.path.join("./outputs/", "_".join(pos_prompts["prompts"]))
        if not os.path.exists(save_path):
            os.makedirs(save_path)
        else:
            save_path = save_path + "_" + get_timestamp()
            os.makedirs(save_path)
        self.save_path = save_path

        original_img = self.vqgan.decode(self.latent)[0]
        if show_intermediate:
            print("Original Image")
            show_pil(custom_to_pil(original_img))

        original_img = loop_post_process(original_img)
        for iter, transformed_img in enumerate(self._optimize_CLIP(original_img, pos_prompts, neg_prompts)):
            if show_intermediate:
                show_pil(transformed_img)
            if save_intermediate:
                transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}.png"))
            if self.log:
                wandb.log({"Image": wandb.Image(transformed_img)})
        if show_final:
            show_pil(transformed_img)
        if save_final:
            transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}_final.png"))