"docs/source/en/model_doc/starcoder2.md" did not exist on "83ab0115d1e93009eb52b66096e924bb44f928a1"
extracting_data.py 5.12 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
import getopt
import json
import os

# import numpy as np
import sys
from collections import OrderedDict

import datasets
import numpy as np
import torch
from modeling_frcnn import GeneralizedRCNN
from processing_image import Preprocess
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from utils import Config


"""
USAGE:
``python extracting_data.py -i <img_dir> -o <dataset_file>.datasets <batch_size>``
"""


TEST = False
CONFIG = Config.from_pretrained("unc-nlp/frcnn-vg-finetuned")
DEFAULT_SCHEMA = datasets.Features(
    OrderedDict(
        {
            "attr_ids": datasets.Sequence(length=CONFIG.MAX_DETECTIONS, feature=datasets.Value("float32")),
            "attr_probs": datasets.Sequence(length=CONFIG.MAX_DETECTIONS, feature=datasets.Value("float32")),
            "boxes": datasets.Array2D((CONFIG.MAX_DETECTIONS, 4), dtype="float32"),
            "img_id": datasets.Value("int32"),
            "obj_ids": datasets.Sequence(length=CONFIG.MAX_DETECTIONS, feature=datasets.Value("float32")),
            "obj_probs": datasets.Sequence(length=CONFIG.MAX_DETECTIONS, feature=datasets.Value("float32")),
            "roi_features": datasets.Array2D((CONFIG.MAX_DETECTIONS, 2048), dtype="float32"),
            "sizes": datasets.Sequence(length=2, feature=datasets.Value("float32")),
            "preds_per_image": datasets.Value(dtype="int32"),
        }
    )
)


class Extract:
    def __init__(self, argv=sys.argv[1:]):
        inputdir = None
        outputfile = None
        subset_list = None
        batch_size = 1
        opts, args = getopt.getopt(argv, "i:o:b:s", ["inputdir=", "outfile=", "batch_size=", "subset_list="])
        for opt, arg in opts:
            if opt in ("-i", "--inputdir"):
                inputdir = arg
            elif opt in ("-o", "--outfile"):
                outputfile = arg
            elif opt in ("-b", "--batch_size"):
                batch_size = int(arg)
            elif opt in ("-s", "--subset_list"):
                subset_list = arg

        assert inputdir is not None  # and os.path.isdir(inputdir), f"{inputdir}"
        assert outputfile is not None and not os.path.isfile(outputfile), f"{outputfile}"
        if subset_list is not None:
            with open(os.path.realpath(subset_list)) as f:
64
                self.subset_list = {self._vqa_file_split()[0] for x in tryload(f)}
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
        else:
            self.subset_list = None

        self.config = CONFIG
        if torch.cuda.is_available():
            self.config.model.device = "cuda"
        self.inputdir = os.path.realpath(inputdir)
        self.outputfile = os.path.realpath(outputfile)
        self.preprocess = Preprocess(self.config)
        self.model = GeneralizedRCNN.from_pretrained("unc-nlp/frcnn-vg-finetuned", config=self.config)
        self.batch = batch_size if batch_size != 0 else 1
        self.schema = DEFAULT_SCHEMA

    def _vqa_file_split(self, file):
        img_id = int(file.split(".")[0].split("_")[-1])
        filepath = os.path.join(self.inputdir, file)
        return (img_id, filepath)

    @property
    def file_generator(self):
        batch = []
        for i, file in enumerate(os.listdir(self.inputdir)):
            if self.subset_list is not None and i not in self.subset_list:
                continue
            batch.append(self._vqa_file_split(file))
            if len(batch) == self.batch:
                temp = batch
                batch = []
                yield list(map(list, zip(*temp)))

        for i in range(1):
            yield list(map(list, zip(*batch)))

    def __call__(self):
        # make writer
        if not TEST:
            writer = datasets.ArrowWriter(features=self.schema, path=self.outputfile)
        # do file generator
        for i, (img_ids, filepaths) in enumerate(self.file_generator):
            images, sizes, scales_yx = self.preprocess(filepaths)
            output_dict = self.model(
                images,
                sizes,
                scales_yx=scales_yx,
                padding="max_detections",
                max_detections=self.config.MAX_DETECTIONS,
                pad_value=0,
                return_tensors="np",
                location="cpu",
            )
            output_dict["boxes"] = output_dict.pop("normalized_boxes")
            if not TEST:
                output_dict["img_id"] = np.array(img_ids)
                batch = self.schema.encode_batch(output_dict)
                writer.write_batch(batch)
            if TEST:
                break
            # finalizer the writer
        if not TEST:
            num_examples, num_bytes = writer.finalize()
            print(f"Success! You wrote {num_examples} entry(s) and {num_bytes >> 20} mb")


def tryload(stream):
    try:
        data = json.load(stream)
        try:
            data = list(data.keys())
        except Exception:
            data = [d["img_id"] for d in data]
    except Exception:
        try:
            data = eval(stream.read())
        except Exception:
            data = stream.read().split("\n")
    return data


if __name__ == "__main__":
    extract = Extract(sys.argv[1:])
    extract()
    if not TEST:
        dataset = datasets.Dataset.from_file(extract.outputfile)
        # wala!
        # print(np.array(dataset[0:2]["roi_features"]).shape)