finetune_rag.py 25.6 KB
Newer Older
Ola Piktus's avatar
Ola Piktus committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""Finetuning script for RAG models. Adapted from examples.seq2seq.finetune.py"""

import argparse
import logging
import os
import sys
import time
from collections import defaultdict
from pathlib import Path
from typing import Any, Dict, List, Tuple

import numpy as np
import pytorch_lightning as pl
import torch
import torch.distributed as dist
16
17
import torch.distributed as torch_distrib
from pytorch_lightning.plugins.training_type import DDPPlugin
Ola Piktus's avatar
Ola Piktus committed
18
19
20
21
22
23
from torch.utils.data import DataLoader

from transformers import (
    AutoConfig,
    AutoTokenizer,
    BartForConditionalGeneration,
24
    BatchEncoding,
Ola Piktus's avatar
Ola Piktus committed
25
26
27
28
29
30
31
    RagConfig,
    RagSequenceForGeneration,
    RagTokenForGeneration,
    RagTokenizer,
    T5ForConditionalGeneration,
)
from transformers import logging as transformers_logging
32
33
34
35
36
37
from transformers.integrations import is_ray_available


if is_ray_available():
    import ray
    from distributed_ray_retriever import RagRayDistributedRetriever, RayRetriever
Ola Piktus's avatar
Ola Piktus committed
38

39
from callbacks_rag import (  # noqa: E402 # isort:skipq
40
41
42
43
    get_checkpoint_callback,
    get_early_stopping_callback,
    Seq2SeqLoggingCallback,
)
44
45

from distributed_pytorch_retriever import RagPyTorchDistributedRetriever  # noqa: E402 # isort:skip
46
from utils_rag import (  # noqa: E402 # isort:skip
Ola Piktus's avatar
Ola Piktus committed
47
48
49
    calculate_exact_match,
    flatten_list,
    get_git_info,
50
    is_rag_model,
Ola Piktus's avatar
Ola Piktus committed
51
52
53
54
    lmap,
    pickle_save,
    save_git_info,
    save_json,
55
56
    set_extra_model_params,
    Seq2SeqDataset,
Ola Piktus's avatar
Ola Piktus committed
57
58
)

59
60
61
62
63
# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from lightning_base import BaseTransformer, add_generic_args, generic_train  # noqa


Ola Piktus's avatar
Ola Piktus committed
64
65
66
67
68
69
70
71
72
73
74
75
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

transformers_logging.set_verbosity_info()


class AttrDict(dict):
    def __init__(self, *args, **kwargs):
        super(AttrDict, self).__init__(*args, **kwargs)
        self.__dict__ = self


76
77
78
79
80
81
82
83
84
85
class CustomDDP(DDPPlugin):
    def init_ddp_connection(self, global_rank=None, world_size=None) -> None:
        module = self.model
        global_rank = global_rank if global_rank is not None else self.cluster_environment.global_rank()
        world_size = world_size if world_size is not None else self.cluster_environment.world_size()
        os.environ["MASTER_ADDR"] = self.cluster_environment.master_address()
        os.environ["MASTER_PORT"] = str(self.cluster_environment.master_port())
        if not torch.distributed.is_initialized():
            logger.info(f"initializing ddp: GLOBAL_RANK: {global_rank}, MEMBER: {global_rank + 1}/{world_size}")
            torch_distrib.init_process_group(self.torch_distributed_backend, rank=global_rank, world_size=world_size)
86
87

        if module.is_rag_model:
88
            self.distributed_port = module.hparams.distributed_port
89
90
91
92
93
94
            if module.distributed_retriever == "pytorch":
                module.model.rag.retriever.init_retrieval(self.distributed_port)
            elif module.distributed_retriever == "ray" and global_rank == 0:
                # For the Ray retriever, only initialize it once when global
                # rank is 0.
                module.model.rag.retriever.init_retrieval()
95
96


Ola Piktus's avatar
Ola Piktus committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
class GenerativeQAModule(BaseTransformer):
    mode = "generative_qa"
    loss_names = ["loss"]
    metric_names = ["em"]
    val_metric = "em"

    def __init__(self, hparams, **kwargs):
        # when loading from a pytorch lightning checkpoint, hparams are passed as dict
        if isinstance(hparams, dict):
            hparams = AttrDict(hparams)
        if hparams.model_type == "rag_sequence":
            self.model_class = RagSequenceForGeneration
        elif hparams.model_type == "rag_token":
            self.model_class = RagTokenForGeneration
        elif hparams.model_type == "bart":
            self.model_class = BartForConditionalGeneration
        else:
            self.model_class = T5ForConditionalGeneration
        self.is_rag_model = is_rag_model(hparams.model_type)

        config_class = RagConfig if self.is_rag_model else AutoConfig
        config = config_class.from_pretrained(hparams.model_name_or_path)

120
        # set retriever parameters
121
122
123
124
        config.index_name = hparams.index_name or config.index_name
        config.passages_path = hparams.passages_path or config.passages_path
        config.index_path = hparams.index_path or config.index_path
        config.use_dummy_dataset = hparams.use_dummy_dataset
125

Ola Piktus's avatar
Ola Piktus committed
126
127
128
        # set extra_model_params for generator configs and load_model
        extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "attention_dropout", "dropout")
        if self.is_rag_model:
129
130
            if hparams.prefix is not None:
                config.generator.prefix = hparams.prefix
Ola Piktus's avatar
Ola Piktus committed
131
132
            config.label_smoothing = hparams.label_smoothing
            hparams, config.generator = set_extra_model_params(extra_model_params, hparams, config.generator)
133
134
135
136
137
138
139
            if hparams.distributed_retriever == "pytorch":
                retriever = RagPyTorchDistributedRetriever.from_pretrained(hparams.model_name_or_path, config=config)
            elif hparams.distributed_retriever == "ray":
                # The Ray retriever needs the handles to the retriever actors.
                retriever = RagRayDistributedRetriever.from_pretrained(
                    hparams.model_name_or_path, hparams.actor_handles, config=config
                )
Ola Piktus's avatar
Ola Piktus committed
140
141
142
            model = self.model_class.from_pretrained(hparams.model_name_or_path, config=config, retriever=retriever)
            prefix = config.question_encoder.prefix
        else:
143
144
            if hparams.prefix is not None:
                config.prefix = hparams.prefix
Ola Piktus's avatar
Ola Piktus committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
            hparams, config = set_extra_model_params(extra_model_params, hparams, config)
            model = self.model_class.from_pretrained(hparams.model_name_or_path, config=config)
            prefix = config.prefix

        tokenizer = (
            RagTokenizer.from_pretrained(hparams.model_name_or_path)
            if self.is_rag_model
            else AutoTokenizer.from_pretrained(hparams.model_name_or_path)
        )

        super().__init__(hparams, config=config, tokenizer=tokenizer, model=model)

        save_git_info(self.hparams.output_dir)
        self.output_dir = Path(self.hparams.output_dir)
        self.metrics_save_path = Path(self.output_dir) / "metrics.json"
        self.hparams_save_path = Path(self.output_dir) / "hparams.pkl"
        pickle_save(self.hparams, self.hparams_save_path)
        self.step_count = 0
        self.metrics = defaultdict(list)

165
166
167
168
169
        self.dataset_kwargs: dict = {
            "data_dir": self.hparams.data_dir,
            "max_source_length": self.hparams.max_source_length,
            "prefix": prefix or "",
        }
Ola Piktus's avatar
Ola Piktus committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
        n_observations_per_split = {
            "train": self.hparams.n_train,
            "val": self.hparams.n_val,
            "test": self.hparams.n_test,
        }
        self.n_obs = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}

        self.target_lens = {
            "train": self.hparams.max_target_length,
            "val": self.hparams.val_max_target_length,
            "test": self.hparams.test_max_target_length,
        }
        assert self.target_lens["train"] <= self.target_lens["val"], f"target_lens: {self.target_lens}"
        assert self.target_lens["train"] <= self.target_lens["test"], f"target_lens: {self.target_lens}"

        self.hparams.git_sha = get_git_info()["repo_sha"]
        self.num_workers = hparams.num_workers
        self.distributed_port = self.hparams.distributed_port

189
190
191
        # For single GPU training, init_ddp_connection is not called.
        # So we need to initialize the retrievers here.
        if hparams.gpus <= 1:
192
193
194
195
196
197
            if hparams.distributed_retriever == "ray":
                self.model.retriever.init_retrieval()
            elif hparams.distributed_retriever == "pytorch":
                self.model.retriever.init_retrieval(self.distributed_port)

        self.distributed_retriever = hparams.distributed_retriever
Ola Piktus's avatar
Ola Piktus committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

    def forward(self, input_ids, **kwargs):
        return self.model(input_ids, **kwargs)

    def ids_to_clean_text(self, generated_ids: List[int]):
        gen_text = self.tokenizer.batch_decode(
            generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
        )
        return lmap(str.strip, gen_text)

    def _step(self, batch: dict) -> Tuple:
        source_ids, source_mask, target_ids = batch["input_ids"], batch["attention_mask"], batch["decoder_input_ids"]

        rag_kwargs = {}
        if isinstance(self.model, T5ForConditionalGeneration):
            decoder_input_ids = self.model._shift_right(target_ids)
            lm_labels = target_ids
        elif isinstance(self.model, BartForConditionalGeneration):
            decoder_input_ids = target_ids[:, :-1].contiguous()
            lm_labels = target_ids[:, 1:].clone()
        else:
            assert self.is_rag_model
            generator = self.model.rag.generator
            if isinstance(generator, T5ForConditionalGeneration):
                decoder_start_token_id = generator.config.decoder_start_token_id
                decoder_input_ids = (
                    torch.cat(
225
                        [torch.tensor([[decoder_start_token_id]] * target_ids.shape[0]).to(target_ids), target_ids],
Ola Piktus's avatar
Ola Piktus committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
                        dim=1,
                    )
                    if target_ids.shape[0] < self.target_lens["train"]
                    else generator._shift_right(target_ids)
                )
            elif isinstance(generator, BartForConditionalGeneration):
                decoder_input_ids = target_ids
            lm_labels = decoder_input_ids
            rag_kwargs["reduce_loss"] = True

        assert decoder_input_ids is not None

        outputs = self(
            source_ids,
            attention_mask=source_mask,
            decoder_input_ids=decoder_input_ids,
            use_cache=False,
            labels=lm_labels,
            **rag_kwargs,
        )

        loss = outputs["loss"]
        return (loss,)

    @property
    def pad(self) -> int:
        raise NotImplementedError("pad not implemented")

    def training_step(self, batch, batch_idx) -> Dict:
        loss_tensors = self._step(batch)

257
        logs = {name: loss.detach() for name, loss in zip(self.loss_names, loss_tensors)}
Ola Piktus's avatar
Ola Piktus committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
        # tokens per batch
        tgt_pad_token_id = (
            self.tokenizer.generator.pad_token_id
            if isinstance(self.tokenizer, RagTokenizer)
            else self.tokenizer.pad_token_id
        )
        src_pad_token_id = (
            self.tokenizer.question_encoder.pad_token_id
            if isinstance(self.tokenizer, RagTokenizer)
            else self.tokenizer.pad_token_id
        )
        logs["tpb"] = (
            batch["input_ids"].ne(src_pad_token_id).sum() + batch["decoder_input_ids"].ne(tgt_pad_token_id).sum()
        )

        return {"loss": loss_tensors[0], "log": logs}

    def validation_step(self, batch, batch_idx) -> Dict:
        return self._generative_step(batch)

    def validation_epoch_end(self, outputs, prefix="val") -> Dict:
        self.step_count += 1
        losses = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names}
        loss = losses["loss"]
        gen_metrics = {
            k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ["gen_time", "gen_len"]
        }
        metrics_tensor: torch.FloatTensor = torch.tensor(gen_metrics[self.val_metric]).type_as(loss)
        gen_metrics.update({k: v.item() for k, v in losses.items()})

        # fix for https://github.com/PyTorchLightning/pytorch-lightning/issues/2424
        if dist.is_initialized():
            dist.all_reduce(metrics_tensor, op=dist.ReduceOp.SUM)
            metrics_tensor = metrics_tensor / dist.get_world_size()
            gen_metrics.update({self.val_metric: metrics_tensor.item()})

        losses.update(gen_metrics)
        metrics = {f"{prefix}_avg_{k}": x for k, x in losses.items()}
        metrics["step_count"] = self.step_count
        self.save_metrics(metrics, prefix)  # writes to self.metrics_save_path
        preds = flatten_list([x["preds"] for x in outputs])
        return {"log": metrics, "preds": preds, f"{prefix}_loss": loss, f"{prefix}_{self.val_metric}": metrics_tensor}

    def save_metrics(self, latest_metrics, type_path) -> None:
        self.metrics[type_path].append(latest_metrics)
        save_json(self.metrics, self.metrics_save_path)

    def calc_generative_metrics(self, preds, target) -> Dict:
        return calculate_exact_match(preds, target)

    def _generative_step(self, batch: dict) -> dict:
        start_time = time.time()
310
        batch = BatchEncoding(batch).to(device=self.model.device)
Ola Piktus's avatar
Ola Piktus committed
311
312
        generated_ids = self.model.generate(
            batch["input_ids"],
313
            attention_mask=batch["attention_mask"],
Ola Piktus's avatar
Ola Piktus committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
            do_deduplication=False,  # rag specific parameter
            use_cache=True,
            min_length=1,
            max_length=self.target_lens["val"],
        )

        gen_time = (time.time() - start_time) / batch["input_ids"].shape[0]
        preds: List[str] = self.ids_to_clean_text(generated_ids)
        target: List[str] = self.ids_to_clean_text(batch["decoder_input_ids"])
        loss_tensors = self._step(batch)
        base_metrics = {name: loss for name, loss in zip(self.loss_names, loss_tensors)}
        gen_metrics: Dict = self.calc_generative_metrics(preds, target)

        summ_len = np.mean(lmap(len, generated_ids))
        base_metrics.update(gen_time=gen_time, gen_len=summ_len, preds=preds, target=target, **gen_metrics)
        return base_metrics

    def test_step(self, batch, batch_idx):
        return self._generative_step(batch)

    def test_epoch_end(self, outputs):
        return self.validation_epoch_end(outputs, prefix="test")

    def get_dataset(self, type_path) -> Seq2SeqDataset:
        n_obs = self.n_obs[type_path]
        max_target_length = self.target_lens[type_path]
        dataset = Seq2SeqDataset(
            self.tokenizer,
            type_path=type_path,
            n_obs=n_obs,
            max_target_length=max_target_length,
            **self.dataset_kwargs,
        )
        return dataset

    def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False) -> DataLoader:
        dataset = self.get_dataset(type_path)

        dataloader = DataLoader(
            dataset,
            batch_size=batch_size,
            collate_fn=dataset.collate_fn,
            shuffle=shuffle,
            num_workers=self.num_workers,
        )
        return dataloader

    def train_dataloader(self) -> DataLoader:
        dataloader = self.get_dataloader("train", batch_size=self.hparams.train_batch_size, shuffle=True)
        return dataloader

    def val_dataloader(self) -> DataLoader:
        return self.get_dataloader("val", batch_size=self.hparams.eval_batch_size)

    def test_dataloader(self) -> DataLoader:
        return self.get_dataloader("test", batch_size=self.hparams.eval_batch_size)

    @pl.utilities.rank_zero_only
    def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
        save_path = self.output_dir.joinpath("checkpoint{}".format(self.step_count))
        self.model.config.save_step = self.step_count
        self.model.save_pretrained(save_path)
        self.tokenizer.save_pretrained(save_path)

    @staticmethod
    def add_model_specific_args(parser, root_dir):
        BaseTransformer.add_model_specific_args(parser, root_dir)
        add_generic_args(parser, root_dir)
        parser.add_argument(
            "--max_source_length",
            default=128,
            type=int,
Sylvain Gugger's avatar
Sylvain Gugger committed
386
387
388
389
            help=(
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            ),
Ola Piktus's avatar
Ola Piktus committed
390
391
392
393
394
        )
        parser.add_argument(
            "--max_target_length",
            default=25,
            type=int,
Sylvain Gugger's avatar
Sylvain Gugger committed
395
396
397
398
            help=(
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            ),
Ola Piktus's avatar
Ola Piktus committed
399
400
401
402
403
        )
        parser.add_argument(
            "--val_max_target_length",
            default=25,
            type=int,
Sylvain Gugger's avatar
Sylvain Gugger committed
404
405
406
407
            help=(
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            ),
Ola Piktus's avatar
Ola Piktus committed
408
409
410
411
412
        )
        parser.add_argument(
            "--test_max_target_length",
            default=25,
            type=int,
Sylvain Gugger's avatar
Sylvain Gugger committed
413
414
415
416
            help=(
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            ),
Ola Piktus's avatar
Ola Piktus committed
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
        )
        parser.add_argument("--logger_name", type=str, choices=["default", "wandb", "wandb_shared"], default="default")
        parser.add_argument("--n_train", type=int, default=-1, required=False, help="# examples. -1 means use all.")
        parser.add_argument("--n_val", type=int, default=-1, required=False, help="# examples. -1 means use all.")
        parser.add_argument("--n_test", type=int, default=-1, required=False, help="# examples. -1 means use all.")
        parser.add_argument("--label_smoothing", type=float, default=0.0, required=False)
        parser.add_argument(
            "--prefix",
            type=str,
            default=None,
            help="Prefix added at the beginning of each text, typically used with T5-based models.",
        )
        parser.add_argument(
            "--early_stopping_patience",
            type=int,
            default=-1,
            required=False,
Sylvain Gugger's avatar
Sylvain Gugger committed
434
435
436
437
            help=(
                "-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So"
                " val_check_interval will effect it."
            ),
Ola Piktus's avatar
Ola Piktus committed
438
439
440
441
442
443
444
445
        )
        parser.add_argument(
            "--distributed-port", type=int, default=-1, required=False, help="Port number for distributed training."
        )
        parser.add_argument(
            "--model_type",
            choices=["rag_sequence", "rag_token", "bart", "t5"],
            type=str,
Sylvain Gugger's avatar
Sylvain Gugger committed
446
447
448
449
            help=(
                "RAG model type: sequence or token, if none specified, the type is inferred from the"
                " model_name_or_path"
            ),
Ola Piktus's avatar
Ola Piktus committed
450
451
452
        )
        return parser

453
454
455
456
457
458
    @staticmethod
    def add_retriever_specific_args(parser):
        parser.add_argument(
            "--index_name",
            type=str,
            default=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
459
460
461
462
            help=(
                "Name of the index to use: 'hf' for a canonical dataset from the datasets library (default), 'custom'"
                " for a local index, or 'legacy' for the orignal one)"
            ),
463
464
465
466
467
        )
        parser.add_argument(
            "--passages_path",
            type=str,
            default=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
468
469
470
471
            help=(
                "Path to the dataset of passages for custom index. More info about custom indexes in the RagRetriever"
                " documentation as well as in `examples/rag/use_own_knowledge_dataset.py`"
            ),
472
473
474
475
476
        )
        parser.add_argument(
            "--index_path",
            type=str,
            default=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
477
478
479
480
            help=(
                "Path to the faiss index for custom index. More info about custom indexes in the RagRetriever"
                " documentation as well as in `examples/rag/use_own_knowledge_dataset.py`"
            ),
481
        )
482
483
484
485
486
        parser.add_argument(
            "--distributed_retriever",
            choices=["ray", "pytorch"],
            type=str,
            default="pytorch",
Sylvain Gugger's avatar
Sylvain Gugger committed
487
488
489
490
491
492
493
494
495
496
            help=(
                "What implementation to use for distributed retriever? If "
                "pytorch is selected, the index is loaded on training "
                "worker 0, and torch.distributed is used to handle "
                "communication between training worker 0, and the other "
                "training workers. If ray is selected, the Ray library is "
                "used to create load the index on separate processes, "
                "and Ray handles the communication between the training "
                "workers and the retrieval actors."
            ),
497
        )
498
499
500
501
        parser.add_argument(
            "--use_dummy_dataset",
            type=bool,
            default=False,
Sylvain Gugger's avatar
Sylvain Gugger committed
502
503
504
505
            help=(
                "Whether to use the dummy version of the dataset index. More info about custom indexes in the"
                " RagRetriever documentation as well as in `examples/rag/use_own_knowledge_dataset.py`"
            ),
506
        )
507
        return parser
508
509
510
511
512
513
514
515

    @staticmethod
    def add_ray_specific_args(parser):
        # Ray cluster address.
        parser.add_argument(
            "--ray-address",
            default="auto",
            type=str,
Sylvain Gugger's avatar
Sylvain Gugger committed
516
517
518
519
520
521
            help=(
                "The address of the Ray cluster to connect to. If not "
                "specified, Ray will attempt to automatically detect the "
                "cluster. Has no effect if pytorch is used as the distributed "
                "retriever."
            ),
522
        )
523
524
525
526
        parser.add_argument(
            "--num_retrieval_workers",
            type=int,
            default=1,
Sylvain Gugger's avatar
Sylvain Gugger committed
527
528
529
530
531
            help=(
                "The number of retrieval actors to use when Ray is selected"
                "for the distributed retriever. Has no effect when "
                "distributed_retriever is set to pytorch."
            ),
532
        )
533
534
        return parser

Ola Piktus's avatar
Ola Piktus committed
535

536
537
538
539
540
541
542
543
def main(args=None, model=None) -> GenerativeQAModule:
    parser = argparse.ArgumentParser()
    parser = pl.Trainer.add_argparse_args(parser)
    parser = GenerativeQAModule.add_model_specific_args(parser, os.getcwd())
    parser = GenerativeQAModule.add_retriever_specific_args(parser)

    args = args or parser.parse_args()

Ola Piktus's avatar
Ola Piktus committed
544
    Path(args.output_dir).mkdir(exist_ok=True)
545
546
547
548

    named_actors = []
    if args.distributed_retriever == "ray" and args.gpus > 1:
        if not is_ray_available():
Sylvain Gugger's avatar
Sylvain Gugger committed
549
            raise RuntimeError("Please install Ray to use the Ray distributed retriever.")
550
551
        # Connect to an existing Ray cluster.
        try:
552
            ray.init(address=args.ray_address, namespace="rag")
553
554
555
556
557
558
559
560
561
562
563
564
565
566
        except (ConnectionError, ValueError):
            logger.warning(
                "Connection to Ray cluster failed. Make sure a Ray"
                "cluster is running by either using Ray's cluster "
                "launcher (`ray up`) or by manually starting Ray on "
                "each node via `ray start --head` for the head node "
                "and `ray start --address='<ip address>:6379'` for "
                "additional nodes. See "
                "https://docs.ray.io/en/master/cluster/index.html "
                "for more info."
            )
            raise

        # Create Ray actors only for rank 0.
567
568
        if ("LOCAL_RANK" not in os.environ or int(os.environ["LOCAL_RANK"]) == 0) and (
            "NODE_RANK" not in os.environ or int(os.environ["NODE_RANK"]) == 0
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
        ):
            remote_cls = ray.remote(RayRetriever)
            named_actors = [
                remote_cls.options(name="retrieval_worker_{}".format(i)).remote()
                for i in range(args.num_retrieval_workers)
            ]
        else:
            logger.info(
                "Getting named actors for NODE_RANK {}, LOCAL_RANK {}".format(
                    os.environ["NODE_RANK"], os.environ["LOCAL_RANK"]
                )
            )
            named_actors = [ray.get_actor("retrieval_worker_{}".format(i)) for i in range(args.num_retrieval_workers)]
    args.actor_handles = named_actors
    assert args.actor_handles == named_actors

Ola Piktus's avatar
Ola Piktus committed
585
586
587
588
589
590
591
592
593
594
    if model is None:
        model: GenerativeQAModule = GenerativeQAModule(args)

    dataset = Path(args.data_dir).name
    if (
        args.logger_name == "default"
        or args.fast_dev_run
        or str(args.output_dir).startswith("/tmp")
        or str(args.output_dir).startswith("/var")
    ):
595
        training_logger = True  # don't pollute wandb logs unnecessarily
Ola Piktus's avatar
Ola Piktus committed
596
597
598
599
    elif args.logger_name == "wandb":
        from pytorch_lightning.loggers import WandbLogger

        project = os.environ.get("WANDB_PROJECT", dataset)
600
        training_logger = WandbLogger(name=model.output_dir.name, project=project)
Ola Piktus's avatar
Ola Piktus committed
601
602
603
604

    elif args.logger_name == "wandb_shared":
        from pytorch_lightning.loggers import WandbLogger

605
        training_logger = WandbLogger(name=model.output_dir.name, project=f"hf_{dataset}")
Ola Piktus's avatar
Ola Piktus committed
606
607
608
609
610
611

    es_callback = (
        get_early_stopping_callback(model.val_metric, args.early_stopping_patience)
        if args.early_stopping_patience >= 0
        else False
    )
612

Ola Piktus's avatar
Ola Piktus committed
613
614
615
616
617
618
    trainer: pl.Trainer = generic_train(
        model,
        args,
        logging_callback=Seq2SeqLoggingCallback(),
        checkpoint_callback=get_checkpoint_callback(args.output_dir, model.val_metric),
        early_stopping_callback=es_callback,
619
        logger=training_logger,
620
        custom_ddp_plugin=CustomDDP() if args.gpus > 1 else None,
621
        profiler=pl.profiler.AdvancedProfiler() if args.profile else None,
Ola Piktus's avatar
Ola Piktus committed
622
623
624
625
626
627
628
629
630
631
632
633
    )
    pickle_save(model.hparams, model.output_dir / "hparams.pkl")

    if not args.do_predict:
        return model

    # test() without a model tests using the best checkpoint automatically
    trainer.test()
    return model


if __name__ == "__main__":
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
    parser = argparse.ArgumentParser()
    parser = pl.Trainer.add_argparse_args(parser)
    parser = GenerativeQAModule.add_model_specific_args(parser, os.getcwd())
    parser = GenerativeQAModule.add_retriever_specific_args(parser)
    parser = GenerativeQAModule.add_ray_specific_args(parser)

    # Pytorch Lightning Profiler
    parser.add_argument(
        "--profile",
        action="store_true",
        help="If True, use pytorch_lightning.profiler.AdvancedProfiler to profile the Trainer.",
    )

    args = parser.parse_args()

    main(args)