run_ner.py 10.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Matt Maybeno's avatar
Matt Maybeno committed
16
""" Fine-tuning the library models for named entity recognition on CoNLL-2003 (Bert or Roberta). """
17
18
19
20


import logging
import os
21
import sys
Julien Chaumond's avatar
Julien Chaumond committed
22
23
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Tuple
24
25

import numpy as np
26
from seqeval.metrics import f1_score, precision_score, recall_score
Julien Chaumond's avatar
Julien Chaumond committed
27
from torch import nn
Aymeric Augustin's avatar
Aymeric Augustin committed
28
29

from transformers import (
30
31
32
    AutoConfig,
    AutoModelForTokenClassification,
    AutoTokenizer,
Julien Chaumond's avatar
Julien Chaumond committed
33
34
35
36
37
    EvalPrediction,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    set_seed,
Aymeric Augustin's avatar
Aymeric Augustin committed
38
)
Julien Chaumond's avatar
Julien Chaumond committed
39
from utils_ner import NerDataset, Split, get_labels
Aymeric Augustin's avatar
Aymeric Augustin committed
40
41


42
43
44
logger = logging.getLogger(__name__)


Julien Chaumond's avatar
Julien Chaumond committed
45
46
47
48
49
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
50

Julien Chaumond's avatar
Julien Chaumond committed
51
52
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
53
    )
Julien Chaumond's avatar
Julien Chaumond committed
54
55
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
56
    )
Julien Chaumond's avatar
Julien Chaumond committed
57
58
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
59
    )
Julien Chaumond's avatar
Julien Chaumond committed
60
61
62
63
64
    use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."})
    # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
    # or just modify its tokenizer_config.json.
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
65
    )
66
67


Julien Chaumond's avatar
Julien Chaumond committed
68
69
70
71
72
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
73

Julien Chaumond's avatar
Julien Chaumond committed
74
75
    data_dir: str = field(
        metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."}
76
    )
Julien Chaumond's avatar
Julien Chaumond committed
77
78
    labels: Optional[str] = field(
        metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."}
79
    )
Julien Chaumond's avatar
Julien Chaumond committed
80
    max_seq_length: int = field(
81
        default=128,
Julien Chaumond's avatar
Julien Chaumond committed
82
83
84
85
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
86
    )
Julien Chaumond's avatar
Julien Chaumond committed
87
88
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
89
90
    )

Julien Chaumond's avatar
Julien Chaumond committed
91
92
93
94
95
96
97

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
98
99
100
101
102
103
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
104

105
    if (
Julien Chaumond's avatar
Julien Chaumond committed
106
107
108
109
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
110
    ):
111
        raise ValueError(
Julien Chaumond's avatar
Julien Chaumond committed
112
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
113
        )
114
115

    # Setup logging
116
117
118
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
Julien Chaumond's avatar
Julien Chaumond committed
119
        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
120
121
122
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
Julien Chaumond's avatar
Julien Chaumond committed
123
124
125
126
127
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
128
    )
Julien Chaumond's avatar
Julien Chaumond committed
129
    logger.info("Training/evaluation parameters %s", training_args)
130
131

    # Set seed
Julien Chaumond's avatar
Julien Chaumond committed
132
    set_seed(training_args.seed)
133
134

    # Prepare CONLL-2003 task
Julien Chaumond's avatar
Julien Chaumond committed
135
136
    labels = get_labels(data_args.labels)
    label_map: Dict[int, str] = {i: label for i, label in enumerate(labels)}
137
    num_labels = len(labels)
138
139

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
140
141
142
143
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
144

145
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
146
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
147
        num_labels=num_labels,
Julien Chaumond's avatar
Julien Chaumond committed
148
        id2label=label_map,
149
        label2id={label: i for i, label in enumerate(labels)},
Julien Chaumond's avatar
Julien Chaumond committed
150
        cache_dir=model_args.cache_dir,
151
    )
152
    tokenizer = AutoTokenizer.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
153
154
155
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast,
156
    )
157
    model = AutoModelForTokenClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
158
159
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
160
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
161
        cache_dir=model_args.cache_dir,
162
    )
163

Julien Chaumond's avatar
Julien Chaumond committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    # Get datasets
    train_dataset = (
        NerDataset(
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.train,
        )
        if training_args.do_train
        else None
    )
    eval_dataset = (
        NerDataset(
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.dev,
        )
        if training_args.do_eval
        else None
    )
191

Julien Chaumond's avatar
Julien Chaumond committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]:
        preds = np.argmax(predictions, axis=2)

        batch_size, seq_len = preds.shape

        out_label_list = [[] for _ in range(batch_size)]
        preds_list = [[] for _ in range(batch_size)]

        for i in range(batch_size):
            for j in range(seq_len):
                if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
                    out_label_list[i].append(label_map[label_ids[i][j]])
                    preds_list[i].append(label_map[preds[i][j]])

        return preds_list, out_label_list

    def compute_metrics(p: EvalPrediction) -> Dict:
        preds_list, out_label_list = align_predictions(p.predictions, p.label_ids)
        return {
            "precision": precision_score(out_label_list, preds_list),
            "recall": recall_score(out_label_list, preds_list),
            "f1": f1_score(out_label_list, preds_list),
        }

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        compute_metrics=compute_metrics,
    )
224
225

    # Training
Julien Chaumond's avatar
Julien Chaumond committed
226
227
228
229
    if training_args.do_train:
        trainer.train(
            model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
        )
230
231
232
233
234
        trainer.save_model()
        # For convenience, we also re-save the tokenizer to the same directory,
        # so that you can share your model easily on huggingface.co/models =)
        if trainer.is_world_master():
            tokenizer.save_pretrained(training_args.output_dir)
235
236
237

    # Evaluation
    results = {}
238
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
239
240
241
242
243
        logger.info("*** Evaluate ***")

        result = trainer.evaluate()

        output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")
244
245
246
247
248
249
        if trainer.is_world_master():
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key, value in result.items():
                    logger.info("  %s = %s", key, value)
                    writer.write("%s = %s\n" % (key, value))
Julien Chaumond's avatar
Julien Chaumond committed
250
251
252
253

            results.update(result)

    # Predict
254
    if training_args.do_predict:
Julien Chaumond's avatar
Julien Chaumond committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
        test_dataset = NerDataset(
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.test,
        )

        predictions, label_ids, metrics = trainer.predict(test_dataset)
        preds_list, _ = align_predictions(predictions, label_ids)

        output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt")
269
270
271
272
273
        if trainer.is_world_master():
            with open(output_test_results_file, "w") as writer:
                for key, value in metrics.items():
                    logger.info("  %s = %s", key, value)
                    writer.write("%s = %s\n" % (key, value))
Julien Chaumond's avatar
Julien Chaumond committed
274

275
        # Save predictions
Julien Chaumond's avatar
Julien Chaumond committed
276
        output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt")
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
        if trainer.is_world_master():
            with open(output_test_predictions_file, "w") as writer:
                with open(os.path.join(data_args.data_dir, "test.txt"), "r") as f:
                    example_id = 0
                    for line in f:
                        if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                            writer.write(line)
                            if not preds_list[example_id]:
                                example_id += 1
                        elif preds_list[example_id]:
                            output_line = line.split()[0] + " " + preds_list[example_id].pop(0) + "\n"
                            writer.write(output_line)
                        else:
                            logger.warning(
                                "Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0]
                            )
293

294
295
296
    return results


297
298
299
300
301
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


302
303
if __name__ == "__main__":
    main()