"vscode:/vscode.git/clone" did not exist on "caf1d116a62a324a2b0ccfd92ca6c095d5368dde"
test_bash_script.py 7.71 KB
Newer Older
1
2
#!/usr/bin/env python

3
4
5
6
7
8
9
10
11
12
13
import argparse
import os
import sys
from pathlib import Path
from unittest.mock import patch

import pytest
import pytorch_lightning as pl
import timeout_decorator
import torch

14
15
16
from distillation import BartSummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from test_seq2seq_examples import CUDA_AVAILABLE, MBART_TINY
17
from transformers import BartForConditionalGeneration, MarianMTModel
18
from transformers.testing_utils import TestCasePlus, slow
19
from utils import load_json
20
21
22


MODEL_NAME = MBART_TINY
23
MARIAN_MODEL = "sshleifer/student_marian_en_ro_6_1"
24
25


26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
class TestAll(TestCasePlus):
    @slow
    @pytest.mark.skipif(not CUDA_AVAILABLE, reason="too slow to run on CPU")
    def test_model_download(self):
        """This warms up the cache so that we can time the next test without including download time, which varies between machines."""
        BartForConditionalGeneration.from_pretrained(MODEL_NAME)
        MarianMTModel.from_pretrained(MARIAN_MODEL)

    @timeout_decorator.timeout(120)
    @slow
    @pytest.mark.skipif(not CUDA_AVAILABLE, reason="too slow to run on CPU")
    def test_train_mbart_cc25_enro_script(self):
        data_dir = "examples/seq2seq/test_data/wmt_en_ro"
        env_vars_to_replace = {
            "--fp16_opt_level=O1": "",
            "$MAX_LEN": 128,
            "$BS": 4,
            "$GAS": 1,
            "$ENRO_DIR": data_dir,
            "facebook/mbart-large-cc25": MODEL_NAME,
            # Download is 120MB in previous test.
            "val_check_interval=0.25": "val_check_interval=1.0",
        }

        # Clean up bash script
        bash_script = Path("examples/seq2seq/train_mbart_cc25_enro.sh").open().read().split("finetune.py")[1].strip()
        bash_script = bash_script.replace("\\\n", "").strip().replace('"$@"', "")
        for k, v in env_vars_to_replace.items():
            bash_script = bash_script.replace(k, str(v))
        output_dir = self.get_auto_remove_tmp_dir()

        bash_script = bash_script.replace("--fp16 ", "")
        testargs = (
            ["finetune.py"]
            + bash_script.split()
            + [
                f"--output_dir={output_dir}",
                "--gpus=1",
                "--learning_rate=3e-1",
                "--warmup_steps=0",
                "--val_check_interval=1.0",
                "--tokenizer_name=facebook/mbart-large-en-ro",
            ]
        )
        with patch.object(sys, "argv", testargs):
            parser = argparse.ArgumentParser()
            parser = pl.Trainer.add_argparse_args(parser)
            parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
            args = parser.parse_args()
            args.do_predict = False
            # assert args.gpus == gpus THIS BREAKS for multigpu
            model = main(args)

        # Check metrics
        metrics = load_json(model.metrics_save_path)
        first_step_stats = metrics["val"][0]
        last_step_stats = metrics["val"][-1]
        assert (
            len(metrics["val"]) == (args.max_epochs / args.val_check_interval) + 1
        )  # +1 accounts for val_sanity_check

        assert last_step_stats["val_avg_gen_time"] >= 0.01

        assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"]  # model learned nothing
        assert 1.0 >= last_step_stats["val_avg_gen_time"]  # model hanging on generate. Maybe bad config was saved.
        assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"], float)

        # check lightning ckpt can be loaded and has a reasonable statedict
        contents = os.listdir(output_dir)
        ckpt_path = [x for x in contents if x.endswith(".ckpt")][0]
        full_path = os.path.join(args.output_dir, ckpt_path)
        ckpt = torch.load(full_path, map_location="cpu")
        expected_key = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight"
        assert expected_key in ckpt["state_dict"]
        assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.float32

        # TODO: turn on args.do_predict when PL bug fixed.
        if args.do_predict:
            contents = {os.path.basename(p) for p in contents}
            assert "test_generations.txt" in contents
            assert "test_results.txt" in contents
            # assert len(metrics["val"]) ==  desired_n_evals
            assert len(metrics["test"]) == 1

    @timeout_decorator.timeout(600)
    @slow
    @pytest.mark.skipif(not CUDA_AVAILABLE, reason="too slow to run on CPU")
    def test_opus_mt_distill_script(self):
        data_dir = "examples/seq2seq/test_data/wmt_en_ro"
        env_vars_to_replace = {
            "--fp16_opt_level=O1": "",
            "$MAX_LEN": 128,
            "$BS": 16,
            "$GAS": 1,
            "$ENRO_DIR": data_dir,
            "$m": "sshleifer/student_marian_en_ro_6_1",
            "val_check_interval=0.25": "val_check_interval=1.0",
        }

        # Clean up bash script
        bash_script = (
            Path("examples/seq2seq/distil_marian_no_teacher.sh").open().read().split("distillation.py")[1].strip()
        )
        bash_script = bash_script.replace("\\\n", "").strip().replace('"$@"', "")
        bash_script = bash_script.replace("--fp16 ", " ")

        for k, v in env_vars_to_replace.items():
            bash_script = bash_script.replace(k, str(v))
        output_dir = self.get_auto_remove_tmp_dir()
        bash_script = bash_script.replace("--fp16", "")
        epochs = 6
        testargs = (
            ["distillation.py"]
            + bash_script.split()
            + [
                f"--output_dir={output_dir}",
                "--gpus=1",
                "--learning_rate=1e-3",
                f"--num_train_epochs={epochs}",
                "--warmup_steps=10",
                "--val_check_interval=1.0",
147
                "--do_predict",
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
            ]
        )
        with patch.object(sys, "argv", testargs):
            parser = argparse.ArgumentParser()
            parser = pl.Trainer.add_argparse_args(parser)
            parser = BartSummarizationDistiller.add_model_specific_args(parser, os.getcwd())
            args = parser.parse_args()
            # assert args.gpus == gpus THIS BREAKS for multigpu

            model = distill_main(args)

        # Check metrics
        metrics = load_json(model.metrics_save_path)
        first_step_stats = metrics["val"][0]
        last_step_stats = metrics["val"][-1]
        assert len(metrics["val"]) >= (args.max_epochs / args.val_check_interval)  # +1 accounts for val_sanity_check

        assert last_step_stats["val_avg_gen_time"] >= 0.01

        assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"]  # model learned nothing
        assert 1.0 >= last_step_stats["val_avg_gen_time"]  # model hanging on generate. Maybe bad config was saved.
        assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"], float)

        # check lightning ckpt can be loaded and has a reasonable statedict
        contents = os.listdir(output_dir)
        ckpt_path = [x for x in contents if x.endswith(".ckpt")][0]
        full_path = os.path.join(args.output_dir, ckpt_path)
        ckpt = torch.load(full_path, map_location="cpu")
        expected_key = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight"
        assert expected_key in ckpt["state_dict"]
        assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.float32

        # TODO: turn on args.do_predict when PL bug fixed.
        if args.do_predict:
            contents = {os.path.basename(p) for p in contents}
            assert "test_generations.txt" in contents
            assert "test_results.txt" in contents
            # assert len(metrics["val"]) ==  desired_n_evals
            assert len(metrics["test"]) == 1