"...lm-evaluation-harness.git" did not exist on "4bdf11e1785bc6b2005153449975d05eaf7fd8b1"
test_modeling_mobilebert.py 16.9 KB
Newer Older
Vasily Shamporov's avatar
Vasily Shamporov committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
Vasily Shamporov's avatar
Vasily Shamporov committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor


if is_torch_available():
    import torch
    from transformers import (
        MobileBertConfig,
        MobileBertModel,
        MobileBertForMaskedLM,
        MobileBertForNextSentencePrediction,
        MobileBertForPreTraining,
        MobileBertForQuestionAnswering,
        MobileBertForSequenceClassification,
        MobileBertForTokenClassification,
        MobileBertForMultipleChoice,
    )


class MobileBertModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=64,
        embedding_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.embedding_size = embedding_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = MobileBertConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            embedding_size=self.embedding_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
Sylvain Gugger's avatar
Sylvain Gugger committed
125
            return_dict=True,
Vasily Shamporov's avatar
Vasily Shamporov committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        config.is_decoder = True
        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

    def create_and_check_mobilebert_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = MobileBertModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
163
164
165
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Vasily Shamporov's avatar
Vasily Shamporov committed
166

Stas Bekman's avatar
Stas Bekman committed
167
168
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
Vasily Shamporov's avatar
Vasily Shamporov committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

    def create_and_check_mobilebert_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = MobileBertModel(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
185
        result = model(
Vasily Shamporov's avatar
Vasily Shamporov committed
186
187
188
189
190
191
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
192
        result = model(
Vasily Shamporov's avatar
Vasily Shamporov committed
193
194
195
196
197
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
198
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
Vasily Shamporov's avatar
Vasily Shamporov committed
199

Stas Bekman's avatar
Stas Bekman committed
200
201
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
Vasily Shamporov's avatar
Vasily Shamporov committed
202
203
204
205
206
207
208

    def create_and_check_mobilebert_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = MobileBertForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
209
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
210
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
Vasily Shamporov's avatar
Vasily Shamporov committed
211
212
213
214
215
216
217

    def create_and_check_mobilebert_for_next_sequence_prediction(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = MobileBertForNextSentencePrediction(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
218
        result = model(
Vasily Shamporov's avatar
Vasily Shamporov committed
219
220
            input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, next_sentence_label=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
221
        self.parent.assertEqual(result.logits.shape, (self.batch_size, 2))
Vasily Shamporov's avatar
Vasily Shamporov committed
222
223
224
225
226
227
228

    def create_and_check_mobilebert_for_pretraining(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = MobileBertForPreTraining(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
229
        result = model(
Vasily Shamporov's avatar
Vasily Shamporov committed
230
231
232
233
234
235
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            labels=token_labels,
            next_sentence_label=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
236
237
        self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2))
Vasily Shamporov's avatar
Vasily Shamporov committed
238
239
240
241
242
243
244

    def create_and_check_mobilebert_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = MobileBertForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
245
        result = model(
Vasily Shamporov's avatar
Vasily Shamporov committed
246
247
248
249
250
251
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
252
253
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
Vasily Shamporov's avatar
Vasily Shamporov committed
254
255
256
257
258
259
260
261

    def create_and_check_mobilebert_for_sequence_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = MobileBertForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
262
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
263
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
Vasily Shamporov's avatar
Vasily Shamporov committed
264
265
266
267
268
269
270
271

    def create_and_check_mobilebert_for_token_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = MobileBertForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
272
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
273
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
Vasily Shamporov's avatar
Vasily Shamporov committed
274
275
276
277
278
279
280
281
282
283
284

    def create_and_check_mobilebert_for_multiple_choice(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = MobileBertForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
285
        result = model(
Vasily Shamporov's avatar
Vasily Shamporov committed
286
287
288
289
290
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
291
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
Vasily Shamporov's avatar
Vasily Shamporov committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
class MobileBertModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            MobileBertModel,
            MobileBertForMaskedLM,
            MobileBertForMultipleChoice,
            MobileBertForNextSentencePrediction,
            MobileBertForPreTraining,
            MobileBertForQuestionAnswering,
            MobileBertForSequenceClassification,
            MobileBertForTokenClassification,
        )
        if is_torch_available()
        else ()
    )

    def setUp(self):
        self.model_tester = MobileBertModelTester(self)
        self.config_tester = ConfigTester(self, config_class=MobileBertConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_mobilebert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_model(*config_and_inputs)

    def test_mobilebert_model_as_decoder(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_mobilebert_model_as_decoder(*config_and_inputs)

    def test_mobilebert_model_as_decoder_with_default_input_mask(self):
        # This regression test was failing with PyTorch < 1.3
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = self.model_tester.prepare_config_and_inputs_for_decoder()

        input_mask = None

        self.model_tester.create_and_check_mobilebert_model_as_decoder(
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_masked_lm(*config_and_inputs)

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_multiple_choice(*config_and_inputs)

    def test_for_next_sequence_prediction(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*config_and_inputs)

    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_pretraining(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_sequence_classification(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_mobilebert_for_token_classification(*config_and_inputs)


def _long_tensor(tok_lst):
    return torch.tensor(tok_lst, dtype=torch.long, device=torch_device,)


TOLERANCE = 1e-3


@require_torch
class MobileBertModelIntegrationTests(unittest.TestCase):
    @slow
    def test_inference_no_head(self):
        model = MobileBertModel.from_pretrained("google/mobilebert-uncased").to(torch_device)
        input_ids = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]])
        with torch.no_grad():
            output = model(input_ids)[0]
        expected_shape = torch.Size((1, 9, 512))
        self.assertEqual(output.shape, expected_shape)
        expected_slice = torch.tensor(
            [
                [
                    [-2.4736526e07, 8.2691656e04, 1.6521838e05],
                    [-5.7541704e-01, 3.9056022e00, 4.4011507e00],
                    [2.6047359e00, 1.5677652e00, -1.7324188e-01],
                ]
            ],
            device=torch_device,
        )

        # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a
        # ~1 difference, it's therefore not a good idea to measure using addition.
        # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the
        # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE
        lower_bound = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE)
        upper_bound = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE)

        self.assertTrue(lower_bound and upper_bound)