test_mixed_int8.py 35 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
16
import importlib.metadata
17
import tempfile
18
19
import unittest

20
21
from packaging import version

22
from transformers import (
23
    AutoConfig,
24
25
26
27
28
    AutoModel,
    AutoModelForCausalLM,
    AutoModelForSeq2SeqLM,
    AutoModelForSequenceClassification,
    AutoTokenizer,
29
    BitsAndBytesConfig,
30
31
    pipeline,
)
32
from transformers.testing_utils import (
33
    is_accelerate_available,
34
35
36
37
38
39
40
41
42
43
    is_torch_available,
    require_accelerate,
    require_bitsandbytes,
    require_torch,
    require_torch_gpu,
    require_torch_multi_gpu,
    slow,
)


44
def get_some_linear_layer(model):
45
    if model.config.model_type == "gpt2":
46
47
48
49
        return model.transformer.h[0].mlp.c_fc
    return model.transformer.h[0].mlp.dense_4h_to_h


50
51
52
53
54
55
56
if is_accelerate_available():
    from accelerate import PartialState
    from accelerate.logging import get_logger

    logger = get_logger(__name__)
    _ = PartialState()

57
58
if is_torch_available():
    import torch
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    import torch.nn as nn

    class LoRALayer(nn.Module):
        """Wraps a linear layer with LoRA-like adapter - Used for testing purposes only"""

        def __init__(self, module: nn.Module, rank: int):
            super().__init__()
            self.module = module
            self.adapter = nn.Sequential(
                nn.Linear(module.in_features, rank, bias=False),
                nn.Linear(rank, module.out_features, bias=False),
            )
            small_std = (2.0 / (5 * min(module.in_features, module.out_features))) ** 0.5
            nn.init.normal_(self.adapter[0].weight, std=small_std)
            nn.init.zeros_(self.adapter[1].weight)
            self.adapter.to(module.weight.device)

        def forward(self, input, *args, **kwargs):
            return self.module(input, *args, **kwargs) + self.adapter(input)
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97


@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class BaseMixedInt8Test(unittest.TestCase):
    # We keep the constants inside the init function and model loading inside setUp function

    # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
    # Therefore here we use only bloom-1b3 to test our module
    model_name = "bigscience/bloom-1b7"

    # Constant values
    EXPECTED_RELATIVE_DIFFERENCE = (
        1.540025  # This was obtained on a Quadro RTX 8000 so the number might slightly change
    )

    input_text = "Hello my name is"
98
99
    EXPECTED_OUTPUTS = set()
    EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of the family.\n")
100
101
    # Expected values on a A10
    EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n")
102
103
104
105
106
107
108
109
110
111
112
113
    MAX_NEW_TOKENS = 10

    def setUp(self):
        # Models and tokenizer
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)


class MixedInt8Test(BaseMixedInt8Test):
    def setUp(self):
        super().setUp()

        # Models and tokenizer
114
115
116
        self.model_fp16 = AutoModelForCausalLM.from_pretrained(
            self.model_name, torch_dtype=torch.float16, device_map="auto"
        )
117
118
119
120
121
122
123
124
125
126
127
128
129
        self.model_8bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")

    def tearDown(self):
        r"""
        TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
        avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
        """
        del self.model_fp16
        del self.model_8bit

        gc.collect()
        torch.cuda.empty_cache()

130
    def test_get_keys_to_not_convert_trust_remote_code(self):
131
        r"""
132
        Test the `get_keys_to_not_convert` function with `trust_remote_code` models.
133
134
135
        """
        from accelerate import init_empty_weights

136
        from transformers.integrations.bitsandbytes import get_keys_to_not_convert
137
138
139

        model_id = "mosaicml/mpt-7b"
        config = AutoConfig.from_pretrained(
140
            model_id, trust_remote_code=True, revision="ada218f9a93b5f1c6dce48a4cc9ff01fcba431e7"
141
142
        )
        with init_empty_weights():
143
            model = AutoModelForCausalLM.from_config(
144
                config, trust_remote_code=True, code_revision="ada218f9a93b5f1c6dce48a4cc9ff01fcba431e7"
145
            )
146
        self.assertEqual(get_keys_to_not_convert(model), ["transformer.wte"])
147
148
149
150
151
152
153
154
155
156
157

    def test_get_keys_to_not_convert(self):
        r"""
        Test the `get_keys_to_not_convert` function.
        """
        from accelerate import init_empty_weights

        from transformers import AutoModelForMaskedLM, Blip2ForConditionalGeneration, MptForCausalLM, OPTForCausalLM
        from transformers.integrations.bitsandbytes import get_keys_to_not_convert

        model_id = "mosaicml/mpt-7b"
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        config = AutoConfig.from_pretrained(model_id, revision="72e5f594ce36f9cabfa2a9fd8f58b491eb467ee7")
        with init_empty_weights():
            model = MptForCausalLM(config)
        # The order of the keys does not matter, so we sort them before comparing, same for the other tests.
        self.assertEqual(get_keys_to_not_convert(model).sort(), ["lm_head", "transformer.wte"].sort())

        model_id = "Salesforce/blip2-opt-2.7b"
        config = AutoConfig.from_pretrained(model_id, revision="1ef7f63a8f0a144c13fdca8103eb7b4691c74cec")
        with init_empty_weights():
            model = Blip2ForConditionalGeneration(config)
        self.assertEqual(
            get_keys_to_not_convert(model).sort(),
            ["language_model.lm_head", "language_model.model.decoder.embed_tokens"].sort(),
        )

        model_id = "facebook/opt-350m"
        config = AutoConfig.from_pretrained(model_id, revision="cb32f77e905cccbca1d970436fb0f5e6b58ee3c5")
        with init_empty_weights():
            model = OPTForCausalLM(config)
        self.assertEqual(get_keys_to_not_convert(model).sort(), ["lm_head", "model.decoder.embed_tokens"].sort())

179
        model_id = "FacebookAI/roberta-large"
180
181
182
183
184
185
186
187
        config = AutoConfig.from_pretrained(model_id, revision="716877d372b884cad6d419d828bac6c85b3b18d9")
        with init_empty_weights():
            model = AutoModelForMaskedLM.from_config(config)
        self.assertEqual(
            get_keys_to_not_convert(model).sort(),
            ["'roberta.embeddings.word_embeddings', 'lm_head', 'lm_head.decoder"].sort(),
        )

188
189
190
191
192
193
194
195
196
197
198
199
200
    def test_quantization_config_json_serialization(self):
        r"""
        A simple test to check if the quantization config is correctly serialized and deserialized
        """
        config = self.model_8bit.config

        self.assertTrue(hasattr(config, "quantization_config"))

        _ = config.to_dict()
        _ = config.to_diff_dict()

        _ = config.to_json_string()

201
202
203
204
205
206
207
208
    def test_original_dtype(self):
        r"""
        A simple test to check if the model succesfully stores the original dtype
        """
        self.assertTrue(hasattr(self.model_8bit.config, "_pre_quantization_dtype"))
        self.assertFalse(hasattr(self.model_fp16.config, "_pre_quantization_dtype"))
        self.assertTrue(self.model_8bit.config._pre_quantization_dtype == torch.float16)

209
210
211
212
213
214
215
216
217
218
219
    def test_memory_footprint(self):
        r"""
        A simple test to check if the model conversion has been done correctly by checking on the
        memory footprint of the converted model and the class type of the linear layers of the converted models
        """
        from bitsandbytes.nn import Int8Params

        mem_fp16 = self.model_fp16.get_memory_footprint()
        mem_8bit = self.model_8bit.get_memory_footprint()

        self.assertAlmostEqual(mem_fp16 / mem_8bit, self.EXPECTED_RELATIVE_DIFFERENCE)
220
        self.assertTrue(get_some_linear_layer(self.model_8bit).weight.__class__ == Int8Params)
221

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    def test_linear_are_8bit(self):
        r"""
        A simple test to check if the model conversion has been done correctly by checking on the
        memory footprint of the converted model and the class type of the linear layers of the converted models
        """
        from transformers import T5PreTrainedModel

        self.model_fp16.get_memory_footprint()
        self.model_8bit.get_memory_footprint()

        for name, module in self.model_8bit.named_modules():
            if isinstance(module, torch.nn.Linear):
                if name not in ["lm_head"] + T5PreTrainedModel._keep_in_fp32_modules:
                    self.assertTrue(module.weight.dtype == torch.int8)

237
238
239
240
241
242
243
244
    def test_llm_skip(self):
        r"""
        A simple test to check if `llm_int8_skip_modules` works as expected
        """
        import bitsandbytes as bnb

        quantization_config = BitsAndBytesConfig(load_in_8bit=True, llm_int8_skip_modules=["classifier"])
        seq_classification_model = AutoModelForSequenceClassification.from_pretrained(
245
            "FacebookAI/roberta-large-mnli", quantization_config=quantization_config
246
247
248
249
250
251
252
253
254
255
256
        )
        self.assertTrue(seq_classification_model.roberta.encoder.layer[0].output.dense.weight.dtype == torch.int8)
        self.assertTrue(
            isinstance(seq_classification_model.roberta.encoder.layer[0].output.dense, bnb.nn.Linear8bitLt)
        )

        self.assertTrue(isinstance(seq_classification_model.classifier.dense, nn.Linear))
        self.assertTrue(seq_classification_model.classifier.dense.weight.dtype != torch.int8)
        self.assertTrue(isinstance(seq_classification_model.classifier.out_proj, nn.Linear))
        self.assertTrue(seq_classification_model.classifier.out_proj != torch.int8)

257
258
259
260
261
262
263
264
265
    def test_generate_quality(self):
        r"""
        Test the generation quality of the quantized model and see that we are matching the expected output.
        Given that we are operating on small numbers + the testing model is relatively small, we might not get
        the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
        """
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
        output_sequences = self.model_8bit.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)

266
        self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
267

268
269
270
271
272
    def test_generate_quality_config(self):
        r"""
        Test that loading the model with the config is equivalent
        """
        bnb_config = BitsAndBytesConfig()
273
        bnb_config.load_in_8bit = True
274
275
276
277
278
279
280
281
282
283

        model_8bit_from_config = AutoModelForCausalLM.from_pretrained(
            self.model_name, quantization_config=bnb_config, device_map="auto"
        )

        encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
        output_sequences = model_8bit_from_config.generate(
            input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10
        )

284
        self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

    def test_raise_if_config_and_load_in_8bit(self):
        r"""
        Test that loading the model with the config and `load_in_8bit` raises an error
        """
        bnb_config = BitsAndBytesConfig()

        with self.assertRaises(ValueError):
            _ = AutoModelForCausalLM.from_pretrained(
                self.model_name,
                quantization_config=bnb_config,
                load_in_8bit=True,
                device_map="auto",
                llm_int8_enable_fp32_cpu_offload=True,
            )

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
    def test_device_and_dtype_assignment(self):
        r"""
        Test whether trying to cast (or assigning a device to) a model after converting it in 8-bit will throw an error.
        Checks also if other models are casted correctly.
        """
        with self.assertRaises(ValueError):
            # Tries with `str`
            self.model_8bit.to("cpu")

        with self.assertRaises(ValueError):
            # Tries with a `dtype``
            self.model_8bit.to(torch.float16)

        with self.assertRaises(ValueError):
            # Tries with a `device`
            self.model_8bit.to(torch.device("cuda:0"))

        with self.assertRaises(ValueError):
            # Tries with a `device`
            self.model_8bit.float()

        with self.assertRaises(ValueError):
            # Tries with a `device`
            self.model_8bit.half()

        # Test if we did not break anything
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt")

        self.model_fp16 = self.model_fp16.to(torch.float32)
        _ = self.model_fp16.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)

        # Check this does not throw an error
        _ = self.model_fp16.to("cpu")

        # Check this does not throw an error
        _ = self.model_fp16.half()

        # Check this does not throw an error
        _ = self.model_fp16.float()

341
342
343
344
    def test_fp32_int8_conversion(self):
        r"""
        Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly.
        """
345
        model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-small", load_in_8bit=True, device_map="auto")
346
347
        self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32)

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    def test_int8_serialization(self):
        r"""
        Test whether it is possible to serialize a model in 8-bit.
        """
        from bitsandbytes.nn import Int8Params

        with tempfile.TemporaryDirectory() as tmpdirname:
            self.model_8bit.save_pretrained(tmpdirname)

            # check that the file `quantization_config` is present
            config = AutoConfig.from_pretrained(tmpdirname)
            self.assertTrue(hasattr(config, "quantization_config"))

            model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname, load_in_8bit=True, device_map="auto")

363
364
365
            linear = get_some_linear_layer(model_from_saved)
            self.assertTrue(linear.weight.__class__ == Int8Params)
            self.assertTrue(hasattr(linear.weight, "SCB"))
366
367
368
369
370

            # generate
            encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
            output_sequences = model_from_saved.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)

371
        self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

    def test_int8_serialization_regression(self):
        r"""
        Test whether it is possible to serialize a model in 8-bit - using not safetensors
        """
        from bitsandbytes.nn import Int8Params

        with tempfile.TemporaryDirectory() as tmpdirname:
            self.model_8bit.save_pretrained(tmpdirname, safe_serialization=False)

            # check that the file `quantization_config` is present
            config = AutoConfig.from_pretrained(tmpdirname)
            self.assertTrue(hasattr(config, "quantization_config"))

            model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname, load_in_8bit=True, device_map="auto")

            linear = get_some_linear_layer(model_from_saved)
            self.assertTrue(linear.weight.__class__ == Int8Params)
            self.assertTrue(hasattr(linear.weight, "SCB"))

            # generate
            encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
            output_sequences = model_from_saved.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)

396
        self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

    def test_int8_serialization_sharded(self):
        r"""
        Test whether it is possible to serialize a model in 8-bit - sharded version.
        """
        from bitsandbytes.nn import Int8Params

        with tempfile.TemporaryDirectory() as tmpdirname:
            self.model_8bit.save_pretrained(tmpdirname, max_shard_size="200MB")

            # check that the file `quantization_config` is present
            config = AutoConfig.from_pretrained(tmpdirname)
            self.assertTrue(hasattr(config, "quantization_config"))

            model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname)

413
414
415
            linear = get_some_linear_layer(model_from_saved)
            self.assertTrue(linear.weight.__class__ == Int8Params)
            self.assertTrue(hasattr(linear.weight, "SCB"))
416
417
418
419
420

            # generate
            encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
            output_sequences = model_from_saved.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)

421
            self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
422
423
424
425
426
427
428
429
430
431
432

    def test_int8_from_pretrained(self):
        r"""
        Test whether loading a 8bit model from the Hub works as expected
        """
        from bitsandbytes.nn import Int8Params

        model_id = "ybelkada/bloom-1b7-8bit"

        model = AutoModelForCausalLM.from_pretrained(model_id)

433
434
435
        linear = get_some_linear_layer(model)
        self.assertTrue(linear.weight.__class__ == Int8Params)
        self.assertTrue(hasattr(linear.weight, "SCB"))
436
437
438
439
440

        # generate
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
        output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)

441
        self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
442

443

444
445
446
447
448
449
450
451
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class MixedInt8T5Test(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
452
        cls.model_name = "google-t5/t5-small"
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
        cls.dense_act_model_name = "google/flan-t5-small"  # flan-t5 uses dense-act instead of dense-relu-dense
        cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name)
        cls.input_text = "Translate in German: Hello, my dog is cute"

    def tearDown(self):
        r"""
        TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
        avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
        """
        gc.collect()
        torch.cuda.empty_cache()

    def test_inference_without_keep_in_fp32(self):
        r"""
        Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly.
468
        `flan-t5-small` uses `T5DenseGatedActDense` whereas `google-t5/t5-small` uses `T5DenseReluDense`. We need to test
469
470
471
472
        both cases.
        """
        from transformers import T5ForConditionalGeneration

473
        modules = T5ForConditionalGeneration._keep_in_fp32_modules
474
475
        T5ForConditionalGeneration._keep_in_fp32_modules = None

476
        # test with `google-t5/t5-small`
477
478
479
480
481
482
483
484
485
486
        model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
        _ = model.generate(**encoded_input)

        # test with `flan-t5-small`
        model = T5ForConditionalGeneration.from_pretrained(
            self.dense_act_model_name, load_in_8bit=True, device_map="auto"
        )
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
        _ = model.generate(**encoded_input)
487
        T5ForConditionalGeneration._keep_in_fp32_modules = modules
488
489
490
491

    def test_inference_with_keep_in_fp32(self):
        r"""
        Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly.
492
        `flan-t5-small` uses `T5DenseGatedActDense` whereas `google-t5/t5-small` uses `T5DenseReluDense`. We need to test
493
494
        both cases.
        """
495
496
        import bitsandbytes as bnb

497
498
        from transformers import T5ForConditionalGeneration

499
        # test with `google-t5/t5-small`
500
        model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")
501
502
503
504

        # there was a bug with decoders - this test checks that it is fixed
        self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linear8bitLt))

505
506
507
508
509
510
511
512
513
514
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
        _ = model.generate(**encoded_input)

        # test with `flan-t5-small`
        model = T5ForConditionalGeneration.from_pretrained(
            self.dense_act_model_name, load_in_8bit=True, device_map="auto"
        )
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
        _ = model.generate(**encoded_input)

515
516
517
518
    def test_inference_with_keep_in_fp32_serialized(self):
        r"""
        Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly on
        a serialized model.
519
        `flan-t5-small` uses `T5DenseGatedActDense` whereas `google-t5/t5-small` uses `T5DenseReluDense`. We need to test
520
521
522
523
524
525
        both cases.
        """
        import bitsandbytes as bnb

        from transformers import T5ForConditionalGeneration

526
        # test with `google-t5/t5-small`
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
        model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)

            model = T5ForConditionalGeneration.from_pretrained(tmp_dir)

            # there was a bug with decoders - this test checks that it is fixed
            self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linear8bitLt))

            encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
            _ = model.generate(**encoded_input)

            # test with `flan-t5-small`
            model = T5ForConditionalGeneration.from_pretrained(
                self.dense_act_model_name, load_in_8bit=True, device_map="auto"
            )
            encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
            _ = model.generate(**encoded_input)

547

548
549
550
551
552
class MixedInt8ModelClassesTest(BaseMixedInt8Test):
    def setUp(self):
        super().setUp()
        # model_name
        self.model_name = "bigscience/bloom-560m"
553
        self.seq_to_seq_name = "google-t5/t5-small"
554
555
556

        # Different types of model

557
        self.base_model = AutoModel.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")
558
        # Sequence classification model
559
560
561
        self.sequence_model = AutoModelForSequenceClassification.from_pretrained(
            self.model_name, load_in_8bit=True, device_map="auto"
        )
562
        # CausalLM model
563
        self.model_8bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto")
564
565
566
567
        # Seq2seq model
        self.seq_to_seq_model = AutoModelForSeq2SeqLM.from_pretrained(
            self.seq_to_seq_name, load_in_8bit=True, device_map="auto"
        )
568
569
570
571
572
573
574
575
576

    def tearDown(self):
        r"""
        TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
        avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
        """
        del self.base_model
        del self.sequence_model
        del self.model_8bit
577
        del self.seq_to_seq_model
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

        gc.collect()
        torch.cuda.empty_cache()

    def test_correct_head_class(self):
        r"""
        A simple test to check if the last modules for some classes (AutoModelForCausalLM or SequenceClassification)
        are kept in their native class.
        """
        from bitsandbytes.nn import Int8Params

        # last param of a base model should be a linear8bit module
        self.assertTrue(self.base_model.h[-1].mlp.dense_4h_to_h.weight.__class__ == Int8Params)

        # Other heads should be nn.Parameter
        self.assertTrue(self.model_8bit.lm_head.weight.__class__ == torch.nn.Parameter)
        self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter)
595
        self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter)
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627


class MixedInt8TestPipeline(BaseMixedInt8Test):
    def setUp(self):
        super().setUp()

    def tearDown(self):
        r"""
        TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
        avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
        """
        del self.pipe

        gc.collect()
        torch.cuda.empty_cache()

    def test_pipeline(self):
        r"""
        The aim of this test is to verify that the mixed int8 is compatible with `pipeline` from transformers. Since
        we used pipline for inference speed benchmarking we want to make sure that this feature does not break anything
        on pipline.
        """
        # self._clear_cuda_cache()
        self.pipe = pipeline(
            "text-generation",
            model=self.model_name,
            model_kwargs={"device_map": "auto", "load_in_8bit": True},
            max_new_tokens=self.MAX_NEW_TOKENS,
        )

        # Real second forward pass
        pipeline_output = self.pipe(self.input_text)
628
        self.assertIn(pipeline_output[0]["generated_text"], self.EXPECTED_OUTPUTS)
629
630
631
632
633
634
635
636
637
638
639
640
641
642


@require_torch_multi_gpu
class MixedInt8TestMultiGpu(BaseMixedInt8Test):
    def setUp(self):
        super().setUp()

    def test_multi_gpu_loading(self):
        r"""
        This tests that the model has been loaded and can be used correctly on a multi-GPU setup.
        Let's just try to load a model on 2 GPUs and see if it works. The model we test has ~2GB of total, 3GB should suffice
        """

        model_parallel = AutoModelForCausalLM.from_pretrained(
643
            self.model_name, load_in_8bit=True, device_map="balanced"
644
645
        )

Younes Belkada's avatar
Younes Belkada committed
646
647
        # Check correct device map
        self.assertEqual(set(model_parallel.hf_device_map.values()), {0, 1})
648
649
650
651
652
653

        # Check that inference pass works on the model
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt")

        # Second real batch
        output_parallel = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
654
        self.assertIn(self.tokenizer.decode(output_parallel[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
655
656


657
658
659
660
661
662
663
664
665
666
667
668
669
670
@require_torch_multi_gpu
class MixedInt8TestCpuGpu(BaseMixedInt8Test):
    def setUp(self):
        super().setUp()

    def check_inference_correctness(self, model):
        # Check that inference pass works on the model
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt")

        # Check the exactness of the results
        output_parallel = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)

        # Get the generation
        output_text = self.tokenizer.decode(output_parallel[0], skip_special_tokens=True)
671
        self.assertIn(output_text, self.EXPECTED_OUTPUTS)
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707

    def test_cpu_gpu_loading_random_device_map(self):
        r"""
        A test to check is dispatching a model on cpu & gpu works correctly using a random `device_map`.
        """
        device_map = {
            "transformer.word_embeddings": 0,
            "transformer.word_embeddings_layernorm": 0,
            "lm_head": 0,
            "transformer.h.0": "cpu",
            "transformer.h.1": "cpu",
            "transformer.h.2": 0,
            "transformer.h.3": 0,
            "transformer.h.4": 0,
            "transformer.h.5": 0,
            "transformer.h.6": 0,
            "transformer.h.7": 0,
            "transformer.h.8": 0,
            "transformer.h.9": 1,
            "transformer.h.10": 0,
            "transformer.h.11": 1,
            "transformer.h.12": 0,
            "transformer.h.13": 0,
            "transformer.h.14": 1,
            "transformer.h.15": 0,
            "transformer.h.16": 0,
            "transformer.h.17": 1,
            "transformer.h.18": 1,
            "transformer.h.19": 0,
            "transformer.h.20": 1,
            "transformer.h.21": 1,
            "transformer.h.22": 0,
            "transformer.h.23": 0,
            "transformer.ln_f": 1,
        }

708
        bnb_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True, load_in_8bit=True)
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733

        model_8bit = AutoModelForCausalLM.from_pretrained(
            self.model_name,
            device_map=device_map,
            quantization_config=bnb_config,
        )

        # Check that the model has been correctly set on device 0, 1, and `cpu`.
        self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu"})

        self.check_inference_correctness(model_8bit)

    def test_cpu_gpu_loading_custom_device_map(self):
        r"""
        A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`.
        This time the device map is more organized than the test above and uses the abstraction
        `transformer.h` to encapsulate all the decoder layers.
        """
        device_map = {
            "transformer.word_embeddings": "cpu",
            "transformer.word_embeddings_layernorm": "cpu",
            "lm_head": "cpu",
            "transformer.h": 0,
            "transformer.ln_f": 1,
        }
734
        bnb_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True, load_in_8bit=True)
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759

        # Load model
        model_8bit = AutoModelForCausalLM.from_pretrained(
            self.model_name,
            device_map=device_map,
            quantization_config=bnb_config,
        )

        # Check that the model has been correctly set on device 0, 1, and `cpu`.
        self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu"})

        self.check_inference_correctness(model_8bit)

    def test_cpu_gpu_disk_loading_custom_device_map(self):
        r"""
        A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`.
        This time we also add `disk` on the device_map.
        """
        device_map = {
            "transformer.word_embeddings": 0,
            "transformer.word_embeddings_layernorm": "cpu",
            "lm_head": 0,
            "transformer.h": 1,
            "transformer.ln_f": "disk",
        }
760
        bnb_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True, load_in_8bit=True)
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
        with tempfile.TemporaryDirectory() as tmpdirname:
            # Load model
            model_8bit = AutoModelForCausalLM.from_pretrained(
                self.model_name,
                device_map=device_map,
                quantization_config=bnb_config,
                offload_folder=tmpdirname,
            )

            # Check that the model has been correctly set on device 0, 1, and `cpu`.
            self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu", "disk"})

            self.check_inference_correctness(model_8bit)

    def test_cpu_gpu_disk_loading_custom_device_map_kwargs(self):
        r"""
        A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`.
        This time we also add `disk` on the device_map - using the kwargs directly instead of the quantization config
        """
        device_map = {
            "transformer.word_embeddings": 0,
            "transformer.word_embeddings_layernorm": "cpu",
            "lm_head": 0,
            "transformer.h": 1,
            "transformer.ln_f": "disk",
        }
        with tempfile.TemporaryDirectory() as tmpdirname:
            # Load model
            model_8bit = AutoModelForCausalLM.from_pretrained(
                self.model_name,
                device_map=device_map,
Marc Sun's avatar
Marc Sun committed
792
                load_in_8bit=True,
793
794
795
796
797
798
799
800
801
802
                llm_int8_enable_fp32_cpu_offload=True,
                offload_folder=tmpdirname,
            )

            # Check that the model has been correctly set on device 0, 1, and `cpu`.
            self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu", "disk"})

            self.check_inference_correctness(model_8bit)


803
804
805
806
807
808
class MixedInt8TestTraining(BaseMixedInt8Test):
    def setUp(self):
        self.model_name = "facebook/opt-350m"
        super().setUp()

    def test_training(self):
809
        if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.37.0"):
810
811
812
            return

        # Step 1: freeze all parameters
813
814
815
        model = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_8bit=True)

        self.assertEqual(set(model.hf_device_map.values()), {torch.cuda.current_device()})
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843

        for param in model.parameters():
            param.requires_grad = False  # freeze the model - train adapters later
            if param.ndim == 1:
                # cast the small parameters (e.g. layernorm) to fp32 for stability
                param.data = param.data.to(torch.float32)

        # Step 2: add adapters
        for _, module in model.named_modules():
            if "OPTAttention" in repr(type(module)):
                module.q_proj = LoRALayer(module.q_proj, rank=16)
                module.k_proj = LoRALayer(module.k_proj, rank=16)
                module.v_proj = LoRALayer(module.v_proj, rank=16)

        # Step 3: dummy batch
        batch = self.tokenizer("Test batch ", return_tensors="pt").to(0)

        # Step 4: Check if the gradient is not None
        with torch.cuda.amp.autocast():
            out = model.forward(**batch)
            out.logits.norm().backward()

        for module in model.modules():
            if isinstance(module, LoRALayer):
                self.assertTrue(module.adapter[1].weight.grad is not None)
                self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0)
            elif isinstance(module, nn.Embedding):
                self.assertTrue(module.weight.grad is None)
844
845
846


class MixedInt8GPT2Test(MixedInt8Test):
847
    model_name = "openai-community/gpt2-xl"
848
    EXPECTED_RELATIVE_DIFFERENCE = 1.8720077507258357
849
850
851
    EXPECTED_OUTPUTS = set()
    EXPECTED_OUTPUTS.add("Hello my name is John Doe, and I'm a big fan of")
    EXPECTED_OUTPUTS.add("Hello my name is John Doe, and I'm a fan of the")
852
853
    # Expected values on a A10
    EXPECTED_OUTPUTS.add("Hello my name is John Doe, and I am a member of the")
854
855

    def test_int8_from_pretrained(self):
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
        r"""
        Test whether loading a 8bit model from the Hub works as expected
        """
        from bitsandbytes.nn import Int8Params

        model_id = "ybelkada/gpt2-xl-8bit"

        model = AutoModelForCausalLM.from_pretrained(model_id)

        linear = get_some_linear_layer(model)
        self.assertTrue(linear.weight.__class__ == Int8Params)
        self.assertTrue(hasattr(linear.weight, "SCB"))

        # generate
        encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
        output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)

873
        self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)