test_examples.py 16.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17

import argparse
18
import json
19
import logging
20
import os
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import sys
Sylvain Gugger's avatar
Sylvain Gugger committed
22
import unittest
Aymeric Augustin's avatar
Aymeric Augustin committed
23
from unittest.mock import patch
Aymeric Augustin's avatar
Aymeric Augustin committed
24

Stas Bekman's avatar
Stas Bekman committed
25
26
import torch

27
from transformers import Wav2Vec2ForPreTraining
28
from transformers.file_utils import is_apex_available
29
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow, torch_device
30

31
32
33

SRC_DIRS = [
    os.path.join(os.path.dirname(__file__), dirname)
34
35
36
37
38
    for dirname in [
        "text-generation",
        "text-classification",
        "token-classification",
        "language-modeling",
39
        "multiple-choice",
40
        "question-answering",
Sylvain Gugger's avatar
Sylvain Gugger committed
41
42
        "summarization",
        "translation",
43
        "image-classification",
44
        "speech-recognition",
45
        "audio-classification",
46
        "speech-pretraining",
47
    ]
48
49
50
51
52
]
sys.path.extend(SRC_DIRS)


if SRC_DIRS is not None:
53
    import run_audio_classification
Sylvain Gugger's avatar
Sylvain Gugger committed
54
    import run_clm
55
56
    import run_generation
    import run_glue
57
    import run_image_classification
58
    import run_mlm
59
    import run_ner
Sylvain Gugger's avatar
Sylvain Gugger committed
60
    import run_qa as run_squad
61
    import run_speech_recognition_ctc
62
    import run_summarization
63
    import run_swag
64
    import run_translation
65
    import run_wav2vec2_pretraining_no_trainer
Aymeric Augustin's avatar
Aymeric Augustin committed
66

67

68
69
70
logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
71

72

73
74
def get_setup_file():
    parser = argparse.ArgumentParser()
75
    parser.add_argument("-f")
76
77
78
79
    args = parser.parse_args()
    return args.f


80
81
82
83
84
85
86
87
88
89
90
def get_results(output_dir):
    results = {}
    path = os.path.join(output_dir, "all_results.json")
    if os.path.exists(path):
        with open(path, "r") as f:
            results = json.load(f)
    else:
        raise ValueError(f"can't find {path}")
    return results


91
def is_cuda_and_apex_available():
92
93
94
95
    is_using_cuda = torch.cuda.is_available() and torch_device == "cuda"
    return is_using_cuda and is_apex_available()


96
class ExamplesTests(TestCasePlus):
97
98
99
100
    def test_run_glue(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

101
102
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
103
            run_glue.py
104
            --model_name_or_path distilbert-base-uncased
105
106
            --output_dir {tmp_dir}
            --overwrite_output_dir
Sylvain Gugger's avatar
Sylvain Gugger committed
107
108
            --train_file ./tests/fixtures/tests_samples/MRPC/train.csv
            --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
109
110
            --do_train
            --do_eval
111
112
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
113
114
115
116
117
            --learning_rate=1e-4
            --max_steps=10
            --warmup_steps=2
            --seed=42
            --max_seq_length=128
118
            """.split()
119

120
        if is_cuda_and_apex_available():
121
            testargs.append("--fp16")
122

123
        with patch.object(sys, "argv", testargs):
124
125
            run_glue.main()
            result = get_results(tmp_dir)
126
            self.assertGreaterEqual(result["eval_accuracy"], 0.75)
127

Sylvain Gugger's avatar
Sylvain Gugger committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    def test_run_clm(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_clm.py
            --model_name_or_path distilgpt2
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
            --do_train
            --do_eval
            --block_size 128
            --per_device_train_batch_size 5
            --per_device_eval_batch_size 5
            --num_train_epochs 2
            --output_dir {tmp_dir}
            --overwrite_output_dir
            """.split()

        if torch.cuda.device_count() > 1:
            # Skipping because there are not enough batches to train the model + would need a drop_last to work.
            return

        if torch_device != "cuda":
            testargs.append("--no_cuda")

        with patch.object(sys, "argv", testargs):
156
157
            run_clm.main()
            result = get_results(tmp_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
158
159
            self.assertLess(result["perplexity"], 100)

160
    def test_run_mlm(self):
Julien Chaumond's avatar
Julien Chaumond committed
161
162
163
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

164
165
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
166
            run_mlm.py
Julien Chaumond's avatar
Julien Chaumond committed
167
            --model_name_or_path distilroberta-base
168
169
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
170
            --output_dir {tmp_dir}
Julien Chaumond's avatar
Julien Chaumond committed
171
172
173
            --overwrite_output_dir
            --do_train
            --do_eval
174
            --prediction_loss_only
Julien Chaumond's avatar
Julien Chaumond committed
175
            --num_train_epochs=1
176
        """.split()
177
178
179

        if torch_device != "cuda":
            testargs.append("--no_cuda")
180

Julien Chaumond's avatar
Julien Chaumond committed
181
        with patch.object(sys, "argv", testargs):
182
183
            run_mlm.main()
            result = get_results(tmp_dir)
184
            self.assertLess(result["perplexity"], 42)
Julien Chaumond's avatar
Julien Chaumond committed
185

186
187
188
189
    def test_run_ner(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

190
191
192
        # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
        epochs = 7 if get_gpu_count() > 1 else 2

193
194
195
196
197
198
199
200
201
202
203
204
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_ner.py
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/conll/sample.json
            --validation_file tests/fixtures/tests_samples/conll/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
            --warmup_steps=2
            --learning_rate=2e-4
Sylvain Gugger's avatar
Sylvain Gugger committed
205
206
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=2
207
            --num_train_epochs={epochs}
208
            --seed 7
209
210
211
212
213
214
        """.split()

        if torch_device != "cuda":
            testargs.append("--no_cuda")

        with patch.object(sys, "argv", testargs):
215
216
            run_ner.main()
            result = get_results(tmp_dir)
217
            self.assertGreaterEqual(result["eval_accuracy"], 0.75)
218
219
            self.assertLess(result["eval_loss"], 0.5)

Sylvain Gugger's avatar
Sylvain Gugger committed
220
    @unittest.skip("squad_v2 metric is broken on Datasets apparently, skipping until it's fixed.")
221
222
223
224
    def test_run_squad(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

225
226
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
Russell Klopfer's avatar
Russell Klopfer committed
227
            run_qa.py
Sylvain Gugger's avatar
Sylvain Gugger committed
228
229
230
231
            --model_name_or_path bert-base-uncased
            --version_2_with_negative
            --train_file tests/fixtures/tests_samples/SQUAD/sample.json
            --validation_file tests/fixtures/tests_samples/SQUAD/sample.json
232
233
            --output_dir {tmp_dir}
            --overwrite_output_dir
234
235
236
237
238
            --max_steps=10
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
Sylvain Gugger's avatar
Sylvain Gugger committed
239
240
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
241
242
        """.split()

243
        with patch.object(sys, "argv", testargs):
244
245
            run_squad.main()
            result = get_results(tmp_dir)
Russell Klopfer's avatar
Russell Klopfer committed
246
247
            self.assertGreaterEqual(result["eval_f1"], 30)
            self.assertGreaterEqual(result["eval_exact"], 30)
248

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
    def test_run_swag(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_swag.py
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/swag/sample.json
            --validation_file tests/fixtures/tests_samples/swag/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=20
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
        """.split()

        with patch.object(sys, "argv", testargs):
271
272
            run_swag.main()
            result = get_results(tmp_dir)
273
274
            self.assertGreaterEqual(result["eval_accuracy"], 0.8)

275
276
277
278
    def test_generation(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

279
        testargs = ["run_generation.py", "--prompt=Hello", "--length=10", "--seed=42"]
280

281
        if is_cuda_and_apex_available():
282
283
284
285
286
287
            testargs.append("--fp16")

        model_type, model_name = (
            "--model_type=gpt2",
            "--model_name_or_path=sshleifer/tiny-gpt2",
        )
288
        with patch.object(sys, "argv", testargs + [model_type, model_name]):
289
            result = run_generation.main()
290
            self.assertGreaterEqual(len(result[0]), 10)
291
292

    @slow
293
    def test_run_summarization(self):
294
295
296
297
298
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
299
            run_summarization.py
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
            --model_name_or_path t5-small
            --train_file tests/fixtures/tests_samples/xsum/sample.json
            --validation_file tests/fixtures/tests_samples/xsum/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=50
            --warmup_steps=8
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
        """.split()

        with patch.object(sys, "argv", testargs):
316
            run_summarization.main()
317
            result = get_results(tmp_dir)
318
319
320
321
322
323
            self.assertGreaterEqual(result["eval_rouge1"], 10)
            self.assertGreaterEqual(result["eval_rouge2"], 2)
            self.assertGreaterEqual(result["eval_rougeL"], 7)
            self.assertGreaterEqual(result["eval_rougeLsum"], 7)

    @slow
324
    def test_run_translation(self):
325
326
327
328
329
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
330
            run_translation.py
331
            --model_name_or_path sshleifer/student_marian_en_ro_6_1
332
333
            --source_lang en
            --target_lang ro
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
            --train_file tests/fixtures/tests_samples/wmt16/sample.json
            --validation_file tests/fixtures/tests_samples/wmt16/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=50
            --warmup_steps=8
            --do_train
            --do_eval
            --learning_rate=3e-3
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
            --source_lang en_XX
            --target_lang ro_RO
        """.split()

        with patch.object(sys, "argv", testargs):
351
            run_translation.main()
352
            result = get_results(tmp_dir)
353
            self.assertGreaterEqual(result["eval_bleu"], 30)
354
355
356
357
358
359
360
361
362
363

    def test_run_image_classification(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_image_classification.py
            --output_dir {tmp_dir}
            --model_name_or_path google/vit-base-patch16-224-in21k
364
            --dataset_name hf-internal-testing/cats_vs_dogs_sample
365
366
            --do_train
            --do_eval
367
            --learning_rate 1e-4
368
369
370
371
372
373
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --dataloader_num_workers 16
            --metric_for_best_model accuracy
374
            --max_steps 10
375
            --train_val_split 0.1
376
            --seed 42
377
378
379
380
381
382
383
384
385
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_image_classification.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_accuracy"], 0.8)
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

    def test_run_speech_recognition_ctc(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_speech_recognition_ctc.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
            --dataset_name patrickvonplaten/librispeech_asr_dummy
            --dataset_config_name clean
            --train_split_name validation
            --eval_split_name validation
            --audio_column_name file
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --preprocessing_num_workers 16
            --max_steps 10
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_speech_recognition_ctc.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_loss"], result["train_loss"])
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

    def test_run_audio_classification(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_audio_classification.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
            --dataset_name anton-l/superb_demo
            --dataset_config_name ks
            --train_split_name test
            --eval_split_name test
            --audio_column_name file
            --label_column_name label
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --num_train_epochs 10
            --max_steps 50
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_audio_classification.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_loss"], result["train_loss"])
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483

    def test_run_wav2vec2_pretraining(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_wav2vec2_pretraining_no_trainer.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
            --dataset_name patrickvonplaten/librispeech_asr_dummy
            --dataset_config_names clean
            --dataset_split_names validation
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 2
            --preprocessing_num_workers 16
            --max_train_steps 5
            --validation_split_percentage 5
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_wav2vec2_pretraining_no_trainer.main()
            model = Wav2Vec2ForPreTraining.from_pretrained(tmp_dir)
            self.assertIsNotNone(model)