test_modeling_jukebox.py 17.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
Arthur's avatar
Arthur committed
16
from unittest import skip
17
18
19
20
21
22
23
24
25

from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow
from transformers.trainer_utils import set_seed


if is_torch_available():
    import torch

26
    from transformers import JukeboxModel, JukeboxPrior, JukeboxTokenizer
27
28
29
30
31
32


@require_torch
class Jukebox1bModelTester(unittest.TestCase):
    all_model_classes = (JukeboxModel,) if is_torch_available() else ()
    model_id = "openai/jukebox-1b-lyrics"
33
34
35
36
    metas = {
        "artist": "Zac Brown Band",
        "genres": "Country",
        "lyrics": """I met a traveller from an antique land,
37
38
39
40
41
42
43
44
45
46
47
48
49
50
    Who said "Two vast and trunkless legs of stone
    Stand in the desert. . . . Near them, on the sand,
    Half sunk a shattered visage lies, whose frown,
    And wrinkled lip, and sneer of cold command,
    Tell that its sculptor well those passions read
    Which yet survive, stamped on these lifeless things,
    The hand that mocked them, and the heart that fed;
    And on the pedestal, these words appear:
    My name is Ozymandias, King of Kings;
    Look on my Works, ye Mighty, and despair!
    Nothing beside remains. Round the decay
    Of that colossal Wreck, boundless and bare
    The lone and level sands stretch far away
    """,
51
    }
52
53
54
55
56
57
58
59
    # fmt: off
    EXPECTED_OUTPUT_2 = [
        1864, 1536, 1213, 1870, 1357, 1536, 519, 880, 1323, 789, 1082, 534,
        1000, 1445, 1105, 1130, 967, 515, 1434, 1620, 534, 1495, 283, 1445,
        333, 1307, 539, 1631, 1528, 375, 1434, 673, 627, 710, 778, 1883,
        1405, 1276, 1455, 1228
    ]

Yih-Dar's avatar
Yih-Dar committed
60
61
62
63
64
65
66
    EXPECTED_OUTPUT_2_PT_2 = [
        1489, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653
    ]

67
68
69
70
71
72
    EXPECTED_OUTPUT_1 = [
        1125, 1751, 697, 1776, 1141, 1476, 391, 697, 1125, 684, 867, 416,
        844, 1372, 1274, 717, 1274, 844, 1299, 1419, 697, 1370, 317, 1125,
        191, 1440, 1370, 1440, 1370, 282, 1621, 1370, 368, 349, 867, 1872,
        1262, 869, 1728, 747
    ]
Yih-Dar's avatar
Yih-Dar committed
73
74
75
76
77
78
    EXPECTED_OUTPUT_1_PT_2 = [
        416, 416, 1125, 1125, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416
    ]
79
80
81
82
83
84
85

    EXPECTED_OUTPUT_0 = [
        1755, 842, 307, 1843, 1022, 1395, 234, 1554, 806, 739, 1022, 442,
        616, 556, 268, 1499, 933, 457, 1440, 1837, 755, 985, 308, 902,
        293, 1443, 1671, 1141, 1533, 555, 1562, 1061, 287, 417, 1022, 2008,
        1186, 1015, 1777, 268
    ]
Yih-Dar's avatar
Yih-Dar committed
86
87
88
89
90
91
    EXPECTED_OUTPUT_0_PT_2 = [
        854, 842, 1353, 114, 1353, 842, 185, 842, 185, 114, 591, 842,
        185, 417, 185, 842, 307, 842, 591, 842, 185, 842, 307, 842,
        591, 842, 1353, 842, 185, 842, 591, 842, 591, 114, 591, 842,
        185, 842, 591, 89
    ]
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

    EXPECTED_Y_COND = [1058304, 0, 786432, 7169, 507, 76, 27, 40, 30, 76]

    EXPECTED_PRIMED_0 = [
        390, 1160, 1002, 1907, 1788, 1788, 1788, 1907, 1002, 1002, 1854, 1002,
        1002, 1002, 1002, 1002, 1002, 1160, 1160, 1606, 596, 596, 1160, 1002,
        1516, 596, 1002, 1002, 1002, 1907, 1788, 1788, 1788, 1854, 1788, 1907,
        1907, 1788, 596, 1626
    ]
    EXPECTED_PRIMED_1 = [
        1236, 1668, 1484, 1920, 1848, 1409, 139, 864, 1828, 1272, 1599, 824,
        1672, 139, 555, 1484, 824, 1920, 555, 596, 1579, 1599, 1231, 1599,
        1637, 1407, 212, 824, 1599, 116, 1433, 824, 258, 1599, 1433, 1895,
        1063, 1433, 1433, 1599
    ]
    EXPECTED_PRIMED_2 = [
        1684, 1873, 1119, 1189, 395, 611, 1901, 972, 890, 1337, 1392, 1927,
        96, 972, 672, 780, 1119, 890, 158, 771, 1073, 1927, 353, 1331,
        1269, 1459, 1333, 1645, 812, 1577, 1337, 606, 353, 981, 1466, 619,
        197, 391, 302, 1930
    ]
    EXPECTED_VQVAE_ENCODE = [
        390, 1160, 1002, 1907, 1788, 1788, 1788, 1907, 1002, 1002, 1854, 1002,
        1002, 1002, 1002, 1002, 1002, 1160, 1160, 1606, 596, 596, 1160, 1002,
        1516, 596, 1002, 1002, 1002, 1907, 1788, 1788, 1788, 1854, 1788, 1907,
        1907, 1788, 596, 1626
    ]
    EXPECTED_VQVAE_DECODE = [
        -0.0492, -0.0524, -0.0565, -0.0640, -0.0686, -0.0684, -0.0677, -0.0664,
        -0.0605, -0.0490, -0.0330, -0.0168, -0.0083, -0.0075, -0.0051, 0.0025,
        0.0136, 0.0261, 0.0386, 0.0497, 0.0580, 0.0599, 0.0583, 0.0614,
        0.0740, 0.0889, 0.1023, 0.1162, 0.1211, 0.1212, 0.1251, 0.1336,
        0.1502, 0.1686, 0.1883, 0.2148, 0.2363, 0.2458, 0.2507, 0.2531
    ]
    EXPECTED_AUDIO_COND = [
        0.0256, -0.0544, 0.1600, -0.0032, 0.1066, 0.0825, -0.0013, 0.3440,
        0.0210, 0.0412, -0.1777, -0.0892, -0.0164, 0.0285, -0.0613, -0.0617,
        -0.0137, -0.0201, -0.0175, 0.0215, -0.0627, 0.0520, -0.0730, 0.0970,
        -0.0100, 0.0442, -0.0586, 0.0207, -0.0015, -0.0082
    ]
    EXPECTED_META_COND = [
        0.0415, 0.0877, 0.0022, -0.0055, 0.0751, 0.0334, 0.0324, -0.0068,
        0.0011, 0.0017, -0.0676, 0.0655, -0.0143, 0.0399, 0.0303, 0.0743,
        -0.0168, -0.0394, -0.1113, 0.0124, 0.0442, 0.0267, -0.0003, -0.1536,
        -0.0116, -0.1837, -0.0180, -0.1026, -0.0777, -0.0456
    ]
    EXPECTED_LYRIC_COND = [
        76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33,
        45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76
    ]
    # fmt: on

    def prepare_inputs(self):
        tokenizer = JukeboxTokenizer.from_pretrained(self.model_id)
        tokens = tokenizer(**self.metas)["input_ids"]
        return tokens

    @slow
    def test_sampling(self):
        model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()
        labels = self.prepare_inputs()

        set_seed(0)
        zs = [torch.zeros(1, 0, dtype=torch.long).cpu() for _ in range(3)]
        zs = model._sample(zs, labels, [0], sample_length=40 * model.priors[0].raw_to_tokens, save_results=False)
Yih-Dar's avatar
Yih-Dar committed
157
        self.assertIn(zs[0][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_2, self.EXPECTED_OUTPUT_2_PT_2])
158
159
160

        set_seed(0)
        zs = model._sample(zs, labels, [1], sample_length=40 * model.priors[1].raw_to_tokens, save_results=False)
Yih-Dar's avatar
Yih-Dar committed
161
        self.assertIn(zs[1][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_1, self.EXPECTED_OUTPUT_1_PT_2])
162
163
164

        set_seed(0)
        zs = model._sample(zs, labels, [2], sample_length=40 * model.priors[2].raw_to_tokens, save_results=False)
Yih-Dar's avatar
Yih-Dar committed
165
        self.assertIn(zs[2][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_0, self.EXPECTED_OUTPUT_0_PT_2])
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

    @slow
    def test_conditioning(self):
        torch.backends.cuda.matmul.allow_tf32 = False
        model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()

        labels = self.prepare_inputs()
        set_seed(0)
        zs = [torch.zeros(1, 0, dtype=torch.long) for _ in range(3)]

        top_prior = model.priors[0]
        start = 0
        music_token_conds = top_prior.get_music_tokens_conds(zs, start=start, end=start + top_prior.n_ctx)
        metadata = top_prior.get_metadata(labels[0].clone(), start, 1058304, 0)

        self.assertIsNone(music_token_conds)
        self.assertListEqual(metadata.numpy()[0][:10].tolist(), self.EXPECTED_Y_COND)

        audio_conditioning, metadata_conditioning, lyric_tokens = top_prior.get_cond(music_token_conds, metadata)
        torch.testing.assert_allclose(
            audio_conditioning[0][0][:30].detach(), torch.tensor(self.EXPECTED_AUDIO_COND), atol=1e-4, rtol=1e-4
        )
        torch.testing.assert_allclose(
            metadata_conditioning[0][0][:30].detach(), torch.tensor(self.EXPECTED_META_COND), atol=1e-4, rtol=1e-4
        )
        torch.testing.assert_allclose(
            lyric_tokens[0, :30].detach(), torch.tensor(self.EXPECTED_LYRIC_COND), atol=1e-4, rtol=1e-4
        )

    @slow
    def test_primed_sampling(self):
        torch.backends.cuda.matmul.allow_tf32 = False

        model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()
        set_seed(0)
        waveform = torch.rand((1, 5120, 1))
202
        tokens = list(self.prepare_inputs())
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

        zs = [model.vqvae.encode(waveform, start_level=2, bs_chunks=waveform.shape[0])[0], None, None]
        zs = model._sample(
            zs, tokens, sample_levels=[0], save_results=False, sample_length=40 * model.priors[0].raw_to_tokens
        )
        torch.testing.assert_allclose(zs[0][0][:40], torch.tensor(self.EXPECTED_PRIMED_0))

        upper_2 = torch.cat((zs[0], torch.zeros(1, 2048 - zs[0].shape[-1])), dim=-1).long()
        zs = [upper_2, model.vqvae.encode(waveform, start_level=1, bs_chunks=waveform.shape[0])[0], None]
        zs = model._sample(
            zs, tokens, sample_levels=[1], save_results=False, sample_length=40 * model.priors[1].raw_to_tokens
        )
        torch.testing.assert_allclose(zs[1][0][:40], torch.tensor(self.EXPECTED_PRIMED_1))

        upper_1 = torch.cat((zs[1], torch.zeros(1, 2048 - zs[1].shape[-1])), dim=-1).long()
        zs = [upper_2, upper_1, model.vqvae.encode(waveform, start_level=0, bs_chunks=waveform.shape[0])[0]]
        zs = model._sample(
            zs, tokens, sample_levels=[2], save_results=False, sample_length=40 * model.priors[2].raw_to_tokens
        )
        torch.testing.assert_allclose(zs[2][0][:40].cpu(), torch.tensor(self.EXPECTED_PRIMED_2))

    @slow
    def test_vqvae(self):
        model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()
        set_seed(0)
        x = torch.rand((1, 5120, 1))
        with torch.no_grad():
            zs = model.vqvae.encode(x, start_level=2, bs_chunks=x.shape[0])
        torch.testing.assert_allclose(zs[0][0], torch.tensor(self.EXPECTED_VQVAE_ENCODE))

        with torch.no_grad():
            x = model.vqvae.decode(zs, start_level=2, bs_chunks=x.shape[0])
        torch.testing.assert_allclose(x[0, :40, 0], torch.tensor(self.EXPECTED_VQVAE_DECODE), atol=1e-4, rtol=1e-4)


@require_torch
class Jukebox5bModelTester(unittest.TestCase):
    all_model_classes = (JukeboxModel,) if is_torch_available() else ()
    model_id = "openai/jukebox-5b-lyrics"
242
243
244
245
    metas = {
        "artist": "Zac Brown Band",
        "genres": "Country",
        "lyrics": """I met a traveller from an antique land,
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    Who said "Two vast and trunkless legs of stone
    Stand in the desert. . . . Near them, on the sand,
    Half sunk a shattered visage lies, whose frown,
    And wrinkled lip, and sneer of cold command,
    Tell that its sculptor well those passions read
    Which yet survive, stamped on these lifeless things,
    The hand that mocked them, and the heart that fed;
    And on the pedestal, these words appear:
    My name is Ozymandias, King of Kings;
    Look on my Works, ye Mighty, and despair!
    Nothing beside remains. Round the decay
    Of that colossal Wreck, boundless and bare
    The lone and level sands stretch far away
    """,
260
    }
261
262
263
264
265
266
267
268
269

    # fmt: off
    EXPECTED_OUTPUT_2 = [
        1489, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        1489, 1489, 1489, 1489, 1150, 1853, 1509, 1150, 1357, 1509, 6, 1272
    ]
Yih-Dar's avatar
Yih-Dar committed
270
271
272
273
274
275
276
    EXPECTED_OUTPUT_2_PT_2 = [
        1489, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653
    ]
277
278
279
280
281
282
283
284

    EXPECTED_OUTPUT_1 = [
        1125, 416, 1125, 1125, 1125, 1125, 1125, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416
    ]
Yih-Dar's avatar
Yih-Dar committed
285
286
287
288
289
290
291
    EXPECTED_OUTPUT_1_PT_2 = [
        416, 416, 1125, 1125, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416
    ]
292
293
294
295
296
297
298
299

    EXPECTED_OUTPUT_0 = [
        1755, 1061, 234, 1755, 1061, 1755, 185, 290, 307, 307, 616, 616,
        616, 616, 616, 616, 307, 290, 417, 1755, 234, 1755, 185, 290,
        290, 290, 307, 616, 616, 616, 616, 616, 290, 234, 234, 1755,
        234, 234, 1755, 234, 185, 185, 307, 616, 616, 616, 616, 290,
        1755, 1755, 1755, 234, 234, 1755, 1572, 290, 307, 616, 34, 616
    ]
Yih-Dar's avatar
Yih-Dar committed
300
301
302
303
304
305
306
    EXPECTED_OUTPUT_0_PT_2 = [
        854, 842, 1353, 114, 1353, 842, 185, 842, 185, 114, 591, 842, 185,
        417, 185, 842, 307, 842, 591, 842, 185, 842, 185, 842, 591, 842,
        1353, 842, 185, 842, 591, 842, 591, 114, 591, 842, 185, 842, 591,
        89, 591, 842, 591, 842, 591, 417, 1372, 842, 1372, 842, 34, 842,
        185, 89, 591, 842, 185, 842, 591, 632
    ]
307
308
309
310
311
312
313
314

    EXPECTED_GPU_OUTPUTS_2 = [
        1489, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653
    ]
Yih-Dar's avatar
Yih-Dar committed
315
316
317
318
319
320
321
322
323
    EXPECTED_GPU_OUTPUTS_2_PT_2 = [
        1489, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 1853, 1177, 1536, 1228,
        710, 475, 1489, 1229, 1224, 231, 1224, 252, 1434, 653, 475,
        1106, 1877, 1599, 1228, 1600, 1683, 1182, 1853, 475, 1864,
        252, 1229, 1434, 2001
    ]

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
    EXPECTED_GPU_OUTPUTS_1 = [
        1125, 1125, 416, 1125, 1125, 416, 1125, 1125, 416, 416, 1125, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416
    ]
    EXPECTED_GPU_OUTPUTS_0 = [
        491, 1755, 34, 1613, 1755, 417, 992, 1613, 222, 842, 1353, 1613,
        844, 632, 185, 1613, 844, 632, 185, 1613, 185, 842, 677, 1613,
        185, 114, 1353, 1613, 307, 89, 844, 1613, 307, 1332, 234, 1979,
        307, 89, 1353, 616, 34, 842, 185, 842, 34, 842, 185, 842,
        307, 114, 185, 89, 34, 1268, 185, 89, 34, 842, 185, 89
    ]
    # fmt: on

    def prepare_inputs(self, model_id):
        tokenizer = JukeboxTokenizer.from_pretrained(model_id)
        tokens = tokenizer(**self.metas)["input_ids"]
        return tokens

    @slow
    def test_sampling(self):
        model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()
        labels = self.prepare_inputs(self.model_id)

        set_seed(0)
        zs = [torch.zeros(1, 0, dtype=torch.long).cpu() for _ in range(3)]
        zs = model._sample(zs, labels, [0], sample_length=60 * model.priors[0].raw_to_tokens, save_results=False)
Yih-Dar's avatar
Yih-Dar committed
353
        self.assertIn(zs[0][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_2, self.EXPECTED_OUTPUT_2_PT_2])
354
355
356

        set_seed(0)
        zs = model._sample(zs, labels, [1], sample_length=60 * model.priors[1].raw_to_tokens, save_results=False)
Yih-Dar's avatar
Yih-Dar committed
357
        self.assertIn(zs[1][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_1, self.EXPECTED_OUTPUT_1_PT_2])
358
359
360

        set_seed(0)
        zs = model._sample(zs, labels, [2], sample_length=60 * model.priors[2].raw_to_tokens, save_results=False)
Yih-Dar's avatar
Yih-Dar committed
361
        self.assertIn(zs[2][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_0, self.EXPECTED_OUTPUT_0_PT_2])
362
363

    @slow
Arthur's avatar
Arthur committed
364
    @skip("Not enough GPU memory on CI runners")
365
    def test_slow_sampling(self):
366
        model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
        labels = [i.cuda() for i in self.prepare_inputs(self.model_id)]

        set_seed(0)
        model.priors[0].cuda()
        zs = [torch.zeros(1, 0, dtype=torch.long).cuda() for _ in range(3)]
        zs = model._sample(zs, labels, [0], sample_length=60 * model.priors[0].raw_to_tokens, save_results=False)
        torch.testing.assert_allclose(zs[0][0].cpu(), torch.tensor(self.EXPECTED_GPU_OUTPUTS_2))
        model.priors[0].cpu()

        set_seed(0)
        model.priors[1].cuda()
        zs = model._sample(zs, labels, [1], sample_length=60 * model.priors[1].raw_to_tokens, save_results=False)
        torch.testing.assert_allclose(zs[1][0].cpu(), torch.tensor(self.EXPECTED_GPU_OUTPUTS_1))
        model.priors[1].cpu()

        set_seed(0)
        model.priors[2].cuda()
        zs = model._sample(zs, labels, [2], sample_length=60 * model.priors[2].raw_to_tokens, save_results=False)
        torch.testing.assert_allclose(zs[2][0].cpu(), torch.tensor(self.EXPECTED_GPU_OUTPUTS_0))

    @slow
    def test_fp16_slow_sampling(self):
389
390
        prior_id = "ArthurZ/jukebox_prior_0"
        model = JukeboxPrior.from_pretrained(prior_id, min_duration=0).eval().half().to("cuda")
391

392
393
        labels = self.prepare_inputs(prior_id)[0].cuda()
        metadata = model.get_metadata(labels, 0, 7680, 0)
394
        set_seed(0)
395
        outputs = model.sample(1, metadata=metadata, sample_tokens=60)
Yih-Dar's avatar
Yih-Dar committed
396
        self.assertIn(outputs[0].cpu().tolist(), [self.EXPECTED_GPU_OUTPUTS_2, self.EXPECTED_GPU_OUTPUTS_2_PT_2])