test_processor_pix2struct.py 7.18 KB
Newer Older
Younes Belkada's avatar
Younes Belkada committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import tempfile
import unittest

import numpy as np
import pytest

from transformers.testing_utils import require_torch, require_vision
Yih-Dar's avatar
Yih-Dar committed
22
from transformers.utils import is_vision_available
Younes Belkada's avatar
Younes Belkada committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110


if is_vision_available():
    from PIL import Image

    from transformers import (
        AutoProcessor,
        Pix2StructImageProcessor,
        Pix2StructProcessor,
        PreTrainedTokenizerFast,
        T5Tokenizer,
    )


@require_vision
@require_torch
class Pix2StructProcessorTest(unittest.TestCase):
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()

        image_processor = Pix2StructImageProcessor()
        tokenizer = T5Tokenizer.from_pretrained("t5-small")

        processor = Pix2StructProcessor(image_processor, tokenizer)

        processor.save_pretrained(self.tmpdirname)

    def get_tokenizer(self, **kwargs):
        return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer

    def get_image_processor(self, **kwargs):
        return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def prepare_image_inputs(self):
        """
        This function prepares a list of random PIL images of the same fixed size.
        """

        image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]

        image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]

        return image_inputs

    def test_save_load_pretrained_additional_features(self):
        processor = Pix2StructProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
        processor.save_pretrained(self.tmpdirname)

        tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
        image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)

        processor = Pix2StructProcessor.from_pretrained(
            self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
        )

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
        self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast)

        self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.image_processor, Pix2StructImageProcessor)

    def test_image_processor(self):
        image_processor = self.get_image_processor()
        tokenizer = self.get_tokenizer()

        processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)

        image_input = self.prepare_image_inputs()

        input_feat_extract = image_processor(image_input, return_tensors="np")
        input_processor = processor(images=image_input, return_tensors="np")

        for key in input_feat_extract.keys():
            self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)

    def test_tokenizer(self):
        image_processor = self.get_image_processor()
        tokenizer = self.get_tokenizer()

        processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)

        input_str = "lower newer"

        encoded_processor = processor(text=input_str)

111
        encoded_tok = tokenizer(input_str, return_token_type_ids=False, add_special_tokens=True)
Younes Belkada's avatar
Younes Belkada committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

        for key in encoded_tok.keys():
            self.assertListEqual(encoded_tok[key], encoded_processor[key])

    def test_processor(self):
        image_processor = self.get_image_processor()
        tokenizer = self.get_tokenizer()

        processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)

        input_str = "lower newer"
        image_input = self.prepare_image_inputs()

        inputs = processor(text=input_str, images=image_input)

        self.assertListEqual(
            list(inputs.keys()), ["flattened_patches", "attention_mask", "decoder_attention_mask", "decoder_input_ids"]
        )

        # test if it raises when no input is passed
        with pytest.raises(ValueError):
            processor()

    def test_processor_max_patches(self):
        image_processor = self.get_image_processor()
        tokenizer = self.get_tokenizer()

        processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)

        input_str = "lower newer"
        image_input = self.prepare_image_inputs()

        inputs = processor(text=input_str, images=image_input)

        max_patches = [512, 1024, 2048, 4096]
        expected_hidden_size = [770, 770, 770, 770]
        # with text
        for i, max_patch in enumerate(max_patches):
            inputs = processor(text=input_str, images=image_input, max_patches=max_patch)
            self.assertEqual(inputs["flattened_patches"][0].shape[0], max_patch)
            self.assertEqual(inputs["flattened_patches"][0].shape[1], expected_hidden_size[i])

        # without text input
        for i, max_patch in enumerate(max_patches):
            inputs = processor(images=image_input, max_patches=max_patch)
            self.assertEqual(inputs["flattened_patches"][0].shape[0], max_patch)
            self.assertEqual(inputs["flattened_patches"][0].shape[1], expected_hidden_size[i])

    def test_tokenizer_decode(self):
        image_processor = self.get_image_processor()
        tokenizer = self.get_tokenizer()

        processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)

        predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]

        decoded_processor = processor.batch_decode(predicted_ids)
        decoded_tok = tokenizer.batch_decode(predicted_ids)

        self.assertListEqual(decoded_tok, decoded_processor)

    def test_model_input_names(self):
        image_processor = self.get_image_processor()
        tokenizer = self.get_tokenizer()

        processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor)

        input_str = "lower newer"
        image_input = self.prepare_image_inputs()

        inputs = processor(text=input_str, images=image_input)

        # For now the processor supports only ["flattened_patches", "input_ids", "attention_mask", "decoder_attention_mask"]
        self.assertListEqual(
            list(inputs.keys()), ["flattened_patches", "attention_mask", "decoder_attention_mask", "decoder_input_ids"]
        )

        inputs = processor(text=input_str)

        # For now the processor supports only ["flattened_patches", "input_ids", "attention_mask", "decoder_attention_mask"]
        self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"])