mobilevitv2.md 3.63 KB
Newer Older
Shehan Munasinghe's avatar
Shehan Munasinghe committed
1
2
3
4
5
6
7
8
9
10
<!--Copyright 2023 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
11
12
13
14

鈿狅笍 Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

Shehan Munasinghe's avatar
Shehan Munasinghe committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
-->

# MobileViTV2

## Overview

The MobileViTV2 model was proposed in [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari.

MobileViTV2 is the second version of MobileViT, constructed by replacing the multi-headed self-attention in MobileViT with separable self-attention.

The abstract from the paper is the following:

*Mobile vision transformers (MobileViT) can achieve state-of-the-art performance across several mobile vision tasks, including classification and detection. Though these models have fewer parameters, they have high latency as compared to convolutional neural network-based models. The main efficiency bottleneck in MobileViT is the multi-headed self-attention (MHA) in transformers, which requires O(k2) time complexity with respect to the number of tokens (or patches) k. Moreover, MHA requires costly operations (e.g., batch-wise matrix multiplication) for computing self-attention, impacting latency on resource-constrained devices. This paper introduces a separable self-attention method with linear complexity, i.e. O(k). A simple yet effective characteristic of the proposed method is that it uses element-wise operations for computing self-attention, making it a good choice for resource-constrained devices. The improved model, MobileViTV2, is state-of-the-art on several mobile vision tasks, including ImageNet object classification and MS-COCO object detection. With about three million parameters, MobileViTV2 achieves a top-1 accuracy of 75.6% on the ImageNet dataset, outperforming MobileViT by about 1% while running 3.2脳 faster on a mobile device.*

29
30
31
32
This model was contributed by [shehan97](https://huggingface.co/shehan97).
The original code can be found [here](https://github.com/apple/ml-cvnets).

## Usage tips
Shehan Munasinghe's avatar
Shehan Munasinghe committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

- MobileViTV2 is more like a CNN than a Transformer model. It does not work on sequence data but on batches of images. Unlike ViT, there are no embeddings. The backbone model outputs a feature map.
- One can use [`MobileViTImageProcessor`] to prepare images for the model. Note that if you do your own preprocessing, the pretrained checkpoints expect images to be in BGR pixel order (not RGB).
- The available image classification checkpoints are pre-trained on [ImageNet-1k](https://huggingface.co/datasets/imagenet-1k) (also referred to as ILSVRC 2012, a collection of 1.3 million images and 1,000 classes).
- The segmentation model uses a [DeepLabV3](https://arxiv.org/abs/1706.05587) head. The available semantic segmentation checkpoints are pre-trained on [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/).

## MobileViTV2Config

[[autodoc]] MobileViTV2Config

## MobileViTV2Model

[[autodoc]] MobileViTV2Model
    - forward

## MobileViTV2ForImageClassification

[[autodoc]] MobileViTV2ForImageClassification
    - forward

## MobileViTV2ForSemanticSegmentation

[[autodoc]] MobileViTV2ForSemanticSegmentation
    - forward