test_modeling_cvt.py 9.96 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch CvT model. """


import unittest
from math import floor

from transformers import CvtConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
27
from ...test_pipeline_mixin import PipelineTesterMixin
NielsRogge's avatar
NielsRogge committed
28
29
30
31
32
33
34
35
36
37
38
39


if is_torch_available():
    import torch

    from transformers import CvtForImageClassification, CvtModel
    from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST


if is_vision_available():
    from PIL import Image

40
    from transformers import AutoImageProcessor
NielsRogge's avatar
NielsRogge committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56


class CvtConfigTester(ConfigTester):
    def create_and_test_config_common_properties(self):
        config = self.config_class(**self.inputs_dict)
        self.parent.assertTrue(hasattr(config, "embed_dim"))
        self.parent.assertTrue(hasattr(config, "num_heads"))


class CvtModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=64,
        num_channels=3,
57
58
        embed_dim=[16, 32, 48],
        num_heads=[1, 2, 3],
NielsRogge's avatar
NielsRogge committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
        depth=[1, 2, 10],
        patch_sizes=[7, 3, 3],
        patch_stride=[4, 2, 2],
        patch_padding=[2, 1, 1],
        stride_kv=[2, 2, 2],
        cls_token=[False, False, True],
        attention_drop_rate=[0.0, 0.0, 0.0],
        initializer_range=0.02,
        layer_norm_eps=1e-12,
        is_training=True,
        use_labels=True,
        num_labels=2,  # Check
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_sizes = patch_sizes
        self.patch_stride = patch_stride
        self.patch_padding = patch_padding
        self.is_training = is_training
        self.use_labels = use_labels
        self.num_labels = num_labels
        self.num_channels = num_channels
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.stride_kv = stride_kv
        self.depth = depth
        self.cls_token = cls_token
        self.attention_drop_rate = attention_drop_rate
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.num_labels)

        config = self.get_config()
        return config, pixel_values, labels

    def get_config(self):
        return CvtConfig(
            image_size=self.image_size,
            num_labels=self.num_labels,
            num_channels=self.num_channels,
            embed_dim=self.embed_dim,
            num_heads=self.num_heads,
            patch_sizes=self.patch_sizes,
            patch_padding=self.patch_padding,
            patch_stride=self.patch_stride,
            stride_kv=self.stride_kv,
            depth=self.depth,
            cls_token=self.cls_token,
            attention_drop_rate=self.attention_drop_rate,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = CvtModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        image_size = (self.image_size, self.image_size)
        height, width = image_size[0], image_size[1]
        for i in range(len(self.depth)):
            height = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1)
            width = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.embed_dim[-1], height, width))

    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        config.num_labels = self.num_labels
        model = CvtForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
146
class CvtModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
147
148
149
150
151
152
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as Cvt does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (CvtModel, CvtForImageClassification) if is_torch_available() else ()
153
154
155
156
157
    pipeline_model_mapping = (
        {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification}
        if is_torch_available()
        else {}
    )
NielsRogge's avatar
NielsRogge committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

    test_pruning = False
    test_torchscript = False
    test_resize_embeddings = False
    test_head_masking = False
    has_attentions = False

    def setUp(self):
        self.model_tester = CvtModelTester(self)
        self.config_tester = ConfigTester(self, config_class=CvtConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.create_and_test_config_common_properties()
        self.config_tester.create_and_test_config_to_json_string()
        self.config_tester.create_and_test_config_to_json_file()
        self.config_tester.create_and_test_config_from_and_save_pretrained()
        self.config_tester.create_and_test_config_with_num_labels()
        self.config_tester.check_config_can_be_init_without_params()
        self.config_tester.check_config_arguments_init()

    def create_and_test_config_common_properties(self):
        return

181
182
183
184
    @unittest.skip(reason="Cvt does not output attentions")
    def test_attention_outputs(self):
        pass

NielsRogge's avatar
NielsRogge committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    @unittest.skip(reason="Cvt does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="Cvt does not support input and output embeddings")
    def test_model_common_attributes(self):
        pass

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.hidden_states

            expected_num_layers = len(self.model_tester.depth)
            self.assertEqual(len(hidden_states), expected_num_layers)

            # verify the first hidden states (first block)
            self.assertListEqual(
                list(hidden_states[0].shape[-3:]),
                [
                    self.model_tester.embed_dim[0],
                    self.model_tester.image_size // 4,
                    self.model_tester.image_size // 4,
                ],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = CvtModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_torch
@require_vision
class CvtModelIntegrationTest(unittest.TestCase):
    @cached_property
254
255
    def default_image_processor(self):
        return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0])
NielsRogge's avatar
NielsRogge committed
256
257
258
259
260

    @slow
    def test_inference_image_classification_head(self):
        model = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(torch_device)

261
        image_processor = self.default_image_processor
NielsRogge's avatar
NielsRogge committed
262
        image = prepare_img()
263
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
NielsRogge's avatar
NielsRogge committed
264
265
266
267
268
269
270
271
272
273
274
275

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor([0.9285, 0.9015, -0.3150]).to(torch_device)

        self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))