test_pipelines_mask_generation.py 6.42 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import hashlib
import unittest
from typing import Dict

import numpy as np

from transformers import MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
    is_pipeline_test,
    nested_simplify,
    require_tf,
    require_torch,
    require_vision,
    slow,
)


if is_vision_available():
    from PIL import Image
35
36
37
38
39
40
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68


def hashimage(image: Image) -> str:
    m = hashlib.md5(image.tobytes())
    return m.hexdigest()[:10]


def mask_to_test_readable(mask: Image) -> Dict:
    npimg = np.array(mask)
    shape = npimg.shape
    return {"hash": hashimage(mask), "shape": shape}


@is_pipeline_test
@require_vision
@require_torch
class MaskGenerationPipelineTests(unittest.TestCase):
    model_mapping = dict(
        (list(MODEL_FOR_MASK_GENERATION_MAPPING.items()) if MODEL_FOR_MASK_GENERATION_MAPPING else [])
    )

    def get_test_pipeline(self, model, tokenizer, processor):
        image_segmenter = MaskGenerationPipeline(model=model, image_processor=processor)
        return image_segmenter, [
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
        ]

69
70
71
72
    # TODO: Fix me @Arthur
    def run_pipeline_test(self, mask_generator, examples):
        pass

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    @require_tf
    @unittest.skip("Image segmentation not implemented in TF")
    def test_small_model_tf(self):
        pass

    @slow
    @require_torch
    def test_small_model_pt(self):
        image_segmenter = pipeline("mask-generation", model="facebook/sam-vit-huge")

        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", points_per_batch=256)

        # Shortening by hashing
        new_outupt = []
        for i, o in enumerate(outputs["masks"]):
            new_outupt += [{"mask": mask_to_test_readable(o), "scores": outputs["scores"][i]}]

        # fmt: off
        self.assertEqual(
            nested_simplify(new_outupt, decimals=4),
            [
                {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0444},
                {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.021},
                {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0167},
                {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0132},
                {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0053},
                {'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.9967},
                {'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.993},
                {'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.9909},
                {'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.9879},
                {'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.9834},
                {'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.9716},
                {'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.9612},
                {'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.9599},
                {'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.9552},
                {'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.9532},
                {'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.9516},
                {'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.9499},
                {'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.9483},
                {'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.9464},
                {'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.943},
                {'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.943},
                {'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.9408},
                {'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.9335},
                {'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.9326},
                {'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.9262},
                {'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.8999},
                {'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.8986},
                {'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.8984},
                {'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.8873},
                {'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.8871}
            ],
        )
        # fmt: on

    @require_torch
    @slow
    def test_threshold(self):
        model_id = "facebook/sam-vit-huge"
        image_segmenter = pipeline("mask-generation", model=model_id)

        outputs = image_segmenter(
            "http://images.cocodataset.org/val2017/000000039769.jpg", pred_iou_thresh=1, points_per_batch=256
        )

        # Shortening by hashing
        new_outupt = []
        for i, o in enumerate(outputs["masks"]):
            new_outupt += [{"mask": mask_to_test_readable(o), "scores": outputs["scores"][i]}]

        self.assertEqual(
            nested_simplify(new_outupt, decimals=4),
            [
                {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.0444},
                {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0210},
                {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.0167},
                {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.0132},
                {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.0053},
            ],
        )