modeling_t5.py 33.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch T5 model. """

from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import math
import os
thomwolf's avatar
thomwolf committed
23
import math
thomwolf's avatar
thomwolf committed
24
import sys
thomwolf's avatar
thomwolf committed
25
import itertools
thomwolf's avatar
thomwolf committed
26
27
28
29
from io import open

import torch
from torch import nn
thomwolf's avatar
thomwolf committed
30
import torch.nn.functional as F
thomwolf's avatar
thomwolf committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from torch.nn import CrossEntropyLoss, MSELoss

from .modeling_utils import PreTrainedModel, prune_linear_layer
from .configuration_t5 import T5Config
from .file_utils import add_start_docstrings

logger = logging.getLogger(__name__)

####################################################
# This dict contrains shortcut names and associated url
# for the pretrained weights provided with the models
####################################################
T5_PRETRAINED_MODEL_ARCHIVE_MAP = {
    't5-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/t5-base-uncased-pytorch_model.bin",
    't5-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/t5-large-uncased-pytorch_model.bin",
}

####################################################
# This is a conversion method from TF 1.0 to PyTorch
# More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28
####################################################
def load_tf_weights_in_t5(model, config, tf_checkpoint_path):
    """ Load tf checkpoints in a pytorch model.
    """
    try:
        import re
        import numpy as np
        import tensorflow as tf
    except ImportError:
        logger.error("Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split('/')
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
        if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
            logger.info("Skipping {}".format("/".join(name)))
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'kernel' or l[0] == 'gamma':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'output_bias' or l[0] == 'beta':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'output_weights':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'squad':
                pointer = getattr(pointer, 'classifier')
            else:
                try:
                    pointer = getattr(pointer, l[0])
                except AttributeError:
                    logger.info("Skipping {}".format("/".join(name)))
                    continue
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        elif m_name == 'kernel':
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        logger.info("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


####################################################
# PyTorch Models are constructed by sub-classing
# - torch.nn.Module for the layers and
# - PreTrainedModel for the models (it-self a sub-class of torch.nn.Module)
####################################################

thomwolf's avatar
thomwolf committed
125
class T5DenseReluDense(nn.Module):
thomwolf's avatar
thomwolf committed
126
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
        super(T5DenseReluDense, self).__init__()
        self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
        self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, hidden_states):
        h = self.wi(hidden_states)
        h = F.relu(h)
        h = self.dropout(h)
        h = self.wo(h)
        return h


class T5LayerFF(nn.Module):
    def __init__(self, config):
        super(T5LayerFF, self).__init__()
        self.DenseReluDense = T5DenseReluDense(config)
        self.layer_norm = nn.LayerNorm(config.layer_norm_epsilon)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, hidden_states):
        norm_x = self.layer_norm(hidden_states)
        y = self.DenseReluDense(norm_x)
        layer_output = hidden_states + self.dropout(y)
        return layer_output


class T5Attention(nn.Module):
    NEW_ID = itertools.count()

    def __init__(self, config):
        super(T5Attention, self).__init__()
        self.layer_id = next(T5Attention.NEW_ID)

        self.output_attentions = config.output_attentions
        self.relative_attention_num_buckets = config.relative_attention_num_buckets
        self.dim = config.d_model
        self.n_heads = config.num_heads
        self.dropout = config.dropout_rate
        assert self.dim % self.n_heads == 0

        self.q = nn.Linear(self.dim, self.dim, bias=False)
        self.k = nn.Linear(self.dim, self.dim, bias=False)
        self.v = nn.Linear(self.dim, self.dim, bias=False)
        self.o = nn.Linear(self.dim, self.dim, bias=False)

        self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        attention_head_size = self.dim // self.n_heads
        if len(heads) == 0:
            return
        mask = torch.ones(self.n_heads, attention_head_size)
        heads = set(heads) - self.pruned_heads
        for head in heads:
            head -= sum(1 if h < head else 0 for h in self.pruned_heads)
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.q = prune_linear_layer(self.q, index)
        self.k = prune_linear_layer(self.k, index)
        self.v = prune_linear_layer(self.v, index)
        self.o = prune_linear_layer(self.o, index, dim=1)
        # Update hyper params
        self.n_heads = self.n_heads - len(heads)
        self.dim = attention_head_size * self.n_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    @staticmethod
    def _relative_position_bucket(relative_position,
                                  bidirectional=True,
                                  num_buckets=32,
                                  max_distance=128):
        """
        Adapted from Mesh Tensorflow:
        https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593

        Translate relative position to a bucket number for relative attention.
        The relative position is defined as memory_position - query_position, i.e.
        the distance in tokens from the attending position to the attended-to
        position.  If bidirectional=False, then positive relative positions are
        invalid.
        We use smaller buckets for small absolute relative_position and larger buckets
        for larger absolute relative_positions.  All relative positions >=max_distance
        map to the same bucket.  All relative positions <=-max_distance map to the
        same bucket.  This should allow for more graceful generalization to longer
        sequences than the model has been trained on.
        Args:
            relative_position: an int32 Tensor
            bidirectional: a boolean - whether the attention is bidirectional
            num_buckets: an integer
            max_distance: an integer
        Returns:
            a Tensor with the same shape as relative_position, containing int32
            values in the range [0, num_buckets)
        """
        ret = 0
        n = -relative_position
        if bidirectional:
            num_buckets //= 2
            ret += (n < 0).to(torch.long) * num_buckets  # mtf.to_int32(mtf.less(n, 0)) * num_buckets
            n = torch.abs(n)
        else:
            n = torch.max(n, 0)
        # now n is in the range [0, inf)

        # half of the buckets are for exact increments in positions
        max_exact = num_buckets // 2
        is_small = (n < max_exact)

        # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
        val_if_large = max_exact + (
            torch.log(n.float() / max_exact)
            / math.log(max_distance / max_exact) * (num_buckets - max_exact)).to(torch.long)
        val_if_large = torch.min(val_if_large, num_buckets - 1)

        ret += torch.where(is_small, n, val_if_large)
        return ret

    def compute_bias(self, qlen, klen):
        """ Compute binned relative position bias """
        context_position = torch.arange(qlen, dtype=torch.long)[:, None]
        memory_position = torch.arange(klen, dtype=torch.long)[None, :]
        relative_position = memory_position - context_position  # shape (qlen, klen)
        rp_bucket = self._relative_position_bucket(relative_position,
                                                   bidirectional=not self.is_decoder,
                                                   num_buckets=self.relative_attention_num_buckets)
        values = self.relative_attention_bias(rp_bucket)  # shape (qlen, klen, num_heads)
        values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, qlen, klen)
        return values

    def forward(self, input, mask, kv=None, position_bias=None, cache=None, head_mask=None):
        """
        Self-attention (if kv is None) or attention over source sentence (provided by kv).
        """
        # Input is (bs, qlen, dim)
        # Mask is (bs, klen) (non-causal) or (bs, klen, klen)
        bs, qlen, dim = input.size()
        if kv is None:
            klen = qlen if cache is None else cache['slen'] + qlen
        else:
            klen = kv.size(1)
        # assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim)
        n_heads = self.n_heads
        dim_per_head = self.dim // n_heads
        mask_reshape = (bs, 1, qlen, klen) if mask.dim() == 3 else (bs, 1, 1, klen)

        def shape(x):
            """  projection """
            return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)

        def unshape(x):
            """  compute context """
            return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)

        q = shape(self.q(input))                                          # (bs, n_heads, qlen, dim_per_head)
        if kv is None:
            k = shape(self.k(input))                                      # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v(input))                                      # (bs, n_heads, qlen, dim_per_head)
        elif cache is None or self.layer_id not in cache:
            k = v = kv
            k = shape(self.k(k))                                          # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v(v))                                          # (bs, n_heads, qlen, dim_per_head)

        if cache is not None:
            if self.layer_id in cache:
                if kv is None:
                    k_, v_ = cache[self.layer_id]
                    k = torch.cat([k_, k], dim=2)                             # (bs, n_heads, klen, dim_per_head)
                    v = torch.cat([v_, v], dim=2)                             # (bs, n_heads, klen, dim_per_head)
                else:
                    k, v = cache[self.layer_id]
            cache[self.layer_id] = (k, v)

        # q = q / math.sqrt(dim_per_head)                                     # No scaling in T5
        scores = torch.matmul(q, k.transpose(2, 3))                           # (bs, n_heads, qlen, klen)

        if position_bias is None:
            position_bias = self.compute_bias(qlen, klen)
        scores += position_bias

        mask = (mask == 0).view(mask_reshape).expand_as(scores)               # (bs, n_heads, qlen, klen)
        scores.masked_fill_(mask, -float('inf'))                              # (bs, n_heads, qlen, klen)

        weights = F.softmax(scores.float(), dim=-1).type_as(scores)           # (bs, n_heads, qlen, klen)
        weights = F.dropout(weights, p=self.dropout, training=self.training)  # (bs, n_heads, qlen, klen)

        # Mask heads if we want to
        if head_mask is not None:
            weights = weights * head_mask

        context = torch.matmul(weights, v)                                    # (bs, n_heads, qlen, dim_per_head)
        context = unshape(context)                                            # (bs, qlen, dim)

        context = self.o(context)

        outputs = (context,)
        if self.output_attentions:
            outputs = outputs + (weights,)
        return outputs


class T5LayerSelfAttention(nn.Module):
    def __init__(self, config):
        super(T5LayerSelfAttention, self).__init__()
        self.SelfAttention = T5Attention(config)
        self.layer_norm = nn.LayerNorm(config.layer_norm_epsilon)
        self.dropout = nn.Dropout(config.dropout)
thomwolf's avatar
thomwolf committed
337
338

    def forward(self, hidden_states, attention_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
339
340
341
342
343
344
345
        norm_x = self.layer_norm(hidden_states)
        attention_output = self.SelfAttention(norm_x,
                                              attention_mask=attention_mask,
                                              head_mask=head_mask)
        y = attention_output[0]
        layer_output = hidden_states + self.dropout(y)
        outputs = (layer_output,) + attention_output[1:]  # add attentions if we output them
thomwolf's avatar
thomwolf committed
346
347
348
        return outputs


thomwolf's avatar
thomwolf committed
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
class T5LayerCrossAttention(nn.Module):
    def __init__(self, config):
        super(T5LayerCrossAttention, self).__init__()
        self.EncDecAttention = T5Attention(config)
        self.layer_norm = nn.LayerNorm(config.layer_norm_epsilon)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, hidden_states, kv, attention_mask=None, head_mask=None):
        norm_x = self.layer_norm(hidden_states)
        attention_output = self.EncDecAttention(norm_x,
                                                kv=kv,
                                                attention_mask=attention_mask,
                                                head_mask=head_mask)
        y = attention_output[0]
        layer_output = hidden_states + self.dropout(y)
        outputs = (layer_output,) + attention_output[1:]  # add attentions if we output them
        return outputs


class T5Block(nn.Module):
    def __init__(self, config):
        super(T5Block, self).__init__()
        self.is_decoder = config.is_decoder
        self.layer_000 = T5LayerSelfAttention(config)
        if self.is_decoder:
            self.layer_001 = T5LayerCrossAttention(config)
            self.layer_002 = T5LayerFF(config)
        else:
            self.layer_001 = T5LayerFF(config)

    def forward(self, hidden_states, attention_mask=None,
                encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None):
        self_attention_outputs = self.layer_000(hidden_states,
                                                attention_mask=attention_mask,
                                                head_mask=head_mask)
        hidden_states = self_attention_outputs[0]
        outputs = self_attention_outputs[1:]

        if self.is_decoder:
            cross_attention_outputs = self.layer_001(hidden_states,
                                                     kv=encoder_hidden_states,
                                                     attention_mask=encoder_attention_mask,
                                                     head_mask=head_mask)
            hidden_states = cross_attention_outputs[0]
            outputs = cross_attention_outputs[1:] + outputs
            hidden_states = self.layer_002(hidden_states)
        else:
            hidden_states = self.layer_001(hidden_states)

        outputs = (hidden_states,) + outputs  # add attentions if we output them
        return outputs


class T5Stack(nn.Module):
    def __init__(self, config):
        super(T5Stack, self).__init__()
        self.blocks = nn.ModuleList([T5Block(config) for _ in range(config.num_layers)])
        self.final_layer_norm = nn.LayerNorm(config.layer_norm_epsilon)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self,
                hidden_states,
                attention_mask=None,
                encoder_hidden_states=None,
                encoder_attention_mask=None,
                head_mask=None):

        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]

        # Provided a padding mask of dimensions [batch_size, seq_length]
        # - if the model is a decoder, apply a causal mask in addition to the padding mask
        # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if attention_mask.dim() == 2:
            if self.config.is_decoder:
                batch_size, seq_length = input_ids.size()
                seq_ids = torch.arange(seq_length, device=input_ids.device)
                causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
                extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
            else:
                extended_attention_mask = attention_mask[:, None, None, :]

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        # If a 2D ou 3D attention mask is provided for the cross-attention
        # we need to make broadcastabe to [batch_size, num_heads, seq_length, seq_length]
        if encoder_attention_mask.dim() == 3:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
        if encoder_attention_mask.dim() == 2:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
thomwolf's avatar
thomwolf committed
450

thomwolf's avatar
thomwolf committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
        encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=next(self.parameters()).dtype)  # fp16 compatibility
        encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.config.num_hidden_layers

        all_hidden_states = ()
        all_attentions = ()
        position_bias = None
        for i, layer_module in enumerate(self.layer):
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_outputs = layer_module(hidden_states,
                                         attention_mask=extended_attention_mask,
                                         encoder_hidden_states=encoder_hidden_states,
                                         encoder_attention_mask=encoder_extended_attention_mask,
                                         head_mask=head_mask[i])
            hidden_states = layer_outputs[0]

            if self.output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        hidden_states = self.final_layer_norm(hidden_states)
        layer_output = self.dropout(hidden_states)

        # Add last layer
        if self.output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        outputs = (hidden_states,)
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states,)
        if self.output_attentions:
            outputs = outputs + (all_attentions,)
        return outputs  # last-layer hidden state, (all hidden states), (all attentions)


class T5PreTrainedModel(PreTrainedEncoderDecoder):
thomwolf's avatar
thomwolf committed
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    config_class = T5Config
    pretrained_model_archive_map = T5_PRETRAINED_MODEL_ARCHIVE_MAP
    load_tf_weights = load_tf_weights_in_t5

    def _init_weights(self, module):
        """ Initialize the weights """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


T5_START_DOCSTRING = r"""    The T5 model was proposed in
    `Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer`_
    by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu.
    It's an encoder decoder pre-trained transformer.

    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.

    .. _`Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer`:
        https://arxiv.org/abs/1910.10683

    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module

    Parameters:
        config (:class:`~transformers.T5Config`): Model configuration class with all the parameters of the model. 
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

T5_INPUTS_DOCSTRING = r"""
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            To match pre-training, T5 input sequence should be formatted with [CLS] and [SEP] tokens as follows:

            (a) For sequence pairs:

                ``tokens:         [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]``

            (b) For single sequences:

                ``tokens:         [CLS] the dog is hairy . [SEP]``

            T5 is a model with relative position embeddings so you should be able to pad the inputs on
            the right or the left.

            Indices can be obtained using :class:`transformers.T5Tokenizer`.
            See :func:`transformers.PreTrainedTokenizer.encode` and
            :func:`transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare single stack (encoder or decoder) of a T5 Model transformer outputting raw hidden-states"
                      "without any specific head on top.",
                      T5_START_DOCSTRING, T5_INPUTS_DOCSTRING)
class T5Model(T5PreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the output of the last layer of the model.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = T5Tokenizer.from_pretrained('t5-base-uncased')
        model = T5Model.from_pretrained('t5-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

    """
    def __init__(self, config):
        super(T5Model, self).__init__(config)
thomwolf's avatar
thomwolf committed
602
603
604
605
        self.shared = nn.Embeddings(config.vocab_size, config.d_model)

        encoder_config = copy.deepcopy(config)
        self.encoder = T5Stack(encoder_config)
thomwolf's avatar
thomwolf committed
606

thomwolf's avatar
thomwolf committed
607
608
609
        decoder_config = copy.deepcopy(config)
        decoder_config.is_decoder = True
        self.decoder = T5Stack(decoder_config)
thomwolf's avatar
thomwolf committed
610
611
612
613
614

        self.init_weights()

    @property
    def get_input_embeddings(self):
thomwolf's avatar
thomwolf committed
615
        return self.shared
thomwolf's avatar
thomwolf committed
616
617

    def set_input_embeddings(self, new_embeddings):
thomwolf's avatar
thomwolf committed
618
        self.shared = new_embeddings
thomwolf's avatar
thomwolf committed
619
620
621
622
623
624
625
626
627

    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
            See base class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

thomwolf's avatar
thomwolf committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
    def forward(self, encoder_input_ids, decoder_input_ids, **kwargs):
        # keyword arguments come in 3 flavors: encoder-specific (prefixed by
        # `encoder_`), decoder-specific (prefixed by `decoder_`) and those
        # that apply to the model as whole.
        # We let the specific kwargs override the common ones in case of conflict.
        kwargs_common = dict((k, v) for k, v in kwargs.items()
                             if not k.startswith("encoder_") and not k.startswith("decoder_"))
        kwargs_decoder = kwargs_common.copy()
        kwargs_encoder = kwargs_common.copy()
        kwargs_encoder.update(dict((k[len("encoder_") :], v) for k, v in kwargs.items() if k.startswith("encoder_")))
        kwargs_decoder.update(dict((k[len("decoder_") :], v) for k, v in kwargs.items() if k.startswith("decoder_")))

        # Encode if needed (training, first prediction pass)
        encoder_hidden_states = kwargs_encoder.pop("hidden_states", None)
        if encoder_hidden_states is None:
            encoder_inputs_ids = kwargs_encoder.pop("input_ids")
            hidden_states = self.shared(encoder_inputs_ids)  # Convert inputs in embeddings
            encoder_outputs = self.encoder(hidden_states, **kwargs_encoder)
            encoder_hidden_states = encoder_outputs[0]
thomwolf's avatar
thomwolf committed
647
        else:
thomwolf's avatar
thomwolf committed
648
            encoder_outputs = ()
thomwolf's avatar
thomwolf committed
649

thomwolf's avatar
thomwolf committed
650
651
652
653
654
655
        # Decode
        decoder_inputs_ids = kwargs_decoder.pop("input_ids")
        hidden_states = self.shared(decoder_inputs_ids)  # Convert inputs in embeddings
        kwargs_decoder["encoder_hidden_states"] = encoder_hidden_states
        kwargs_decoder["encoder_attention_mask"] = kwargs_encoder.get("attention_mask", None)
        decoder_outputs = self.decoder(hidden_states, **kwargs_decoder)
thomwolf's avatar
thomwolf committed
656

thomwolf's avatar
thomwolf committed
657
        return decoder_outputs + encoder_outputs
thomwolf's avatar
thomwolf committed
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695


@add_start_docstrings("""T5 Model with a `language modeling` head on top. """,
    T5_START_DOCSTRING, T5_INPUTS_DOCSTRING)
class T5WithLMHead(T5PreTrainedModel):
    r"""
        **lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Masked language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = T5Tokenizer.from_pretrained('t5-base-uncased')
        model = T5ForMaskedLM.from_pretrained('t5-base-uncased')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, lm_labels=input_ids)
        loss, prediction_scores = outputs[:2]

    """
    def __init__(self, config):
        super(T5ForMaskedLM, self).__init__(config)

        self.transformer = T5Model(config)
thomwolf's avatar
thomwolf committed
696
        self.lm_head = nn.Linear(config.d_model, config.vocab_size)
thomwolf's avatar
thomwolf committed
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724

        self.init_weights()

    def get_output_embeddings(self):
        return self.lm_head

    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
                lm_labels=None):

        outputs = self.transformer(input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
                            position_ids=position_ids, 
                            head_mask=head_mask)

        sequence_output = outputs[0]
        lm_logits = self.cls(sequence_output)

        outputs = (lm_logits,) + outputs[2:]  # Add hidden states and attention if they are here
        if lm_labels is not None:
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (lm_loss), lm_logits, (hidden_states), (attentions)