test_modeling_tf_mbart.py 5.08 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# coding=utf-8
# Copyright 2020 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest

from tests.test_configuration_common import ConfigTester
from tests.test_modeling_tf_bart import TFBartModelTester
from tests.test_modeling_tf_common import TFModelTesterMixin
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.file_utils import cached_property
from transformers.testing_utils import is_pt_tf_cross_test, require_sentencepiece, require_tf, require_tokenizers, slow


if is_tf_available():

    import tensorflow as tf

    from transformers import TFAutoModelForSeq2SeqLM, TFMBartForConditionalGeneration


class ModelTester(TFBartModelTester):
    config_updates = dict(normalize_before=True, add_final_layer_norm=True)
    config_cls = MBartConfig


@require_tf
class TestTFMBartCommon(TFModelTesterMixin, unittest.TestCase):
    all_model_classes = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
    all_generative_model_classes = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
    model_tester_cls = ModelTester
    is_encoder_decoder = True
    test_pruning = False

    def setUp(self):
        self.model_tester = self.model_tester_cls(self)
        self.config_tester = ConfigTester(self, config_class=MBartConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_inputs_embeds(self):
        # inputs_embeds not supported
        pass

    def test_saved_model_with_hidden_states_output(self):
        # Should be uncommented during patrick TF refactor
        pass

    def test_saved_model_with_attentions_output(self):
        # Should be uncommented during patrick TF refactor
        pass

    def test_compile_tf_model(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
        loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")

        model_class = self.all_generative_model_classes[0]
        input_ids = {
            "decoder_input_ids": tf.keras.Input(batch_shape=(2, 2000), name="decoder_input_ids", dtype="int32"),
            "input_ids": tf.keras.Input(batch_shape=(2, 2000), name="input_ids", dtype="int32"),
        }

        # Prepare our model
        model = model_class(config)
        model(self._prepare_for_class(inputs_dict, model_class))  # Model must be called before saving.
        # Let's load it from the disk to be sure we can use pretrained weights
        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_pretrained(tmpdirname)
            model = model_class.from_pretrained(tmpdirname)

        outputs_dict = model(input_ids)
        hidden_states = outputs_dict[0]

        # Add a dense layer on top to test integration with other keras modules
        outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)

        # Compile extended model
        extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
        extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])


@is_pt_tf_cross_test
@require_sentencepiece
@require_tokenizers
class TestMBartEnRO(unittest.TestCase):
    src_text = [
        " UN Chief Says There Is No Military Solution in Syria",
    ]
    expected_text = [
        "艦eful ONU declar膬 c膬 nu exist膬 o solu牛ie militar膬 卯n Siria",
    ]
    model_name = "facebook/mbart-large-en-ro"

    @cached_property
    def tokenizer(self):
        return AutoTokenizer.from_pretrained(self.model_name)

    @cached_property
    def model(self):
        model = TFAutoModelForSeq2SeqLM.from_pretrained(self.model_name, from_pt=True)
        return model

    def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
        generated_words = self.translate_src_text(**tokenizer_kwargs)
        self.assertListEqual(self.expected_text, generated_words)

    def translate_src_text(self, **tokenizer_kwargs):
        model_inputs = self.tokenizer.prepare_seq2seq_batch(
            src_texts=self.src_text, **tokenizer_kwargs, return_tensors="tf"
        )
        generated_ids = self.model.generate(
            model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2
        )
        generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
        return generated_words

    @slow
    def test_batch_generation_en_ro(self):
        self._assert_generated_batch_equal_expected()