run_squad_w_distillation.py 32.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" This is the exact same script as `examples/run_squad.py` (as of 2019, October 4th) with an additional and optional step of distillation."""

from __future__ import absolute_import, division, print_function

import argparse
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import glob
22
23
24
25
26
27
import logging
import os
import random

import numpy as np
import torch
Aymeric Augustin's avatar
Aymeric Augustin committed
28
29
import torch.nn as nn
import torch.nn.functional as F
30
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
31
from torch.utils.data.distributed import DistributedSampler
32
from tqdm import tqdm, trange
33

34
35
from transformers import (
    WEIGHTS_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
36
    AdamW,
37
38
39
    BertConfig,
    BertForQuestionAnswering,
    BertTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
40
41
42
    DistilBertConfig,
    DistilBertForQuestionAnswering,
    DistilBertTokenizer,
43
44
45
46
47
48
    XLMConfig,
    XLMForQuestionAnswering,
    XLMTokenizer,
    XLNetConfig,
    XLNetForQuestionAnswering,
    XLNetTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
49
    get_linear_schedule_with_warmup,
50
)
51

52
53
54
from ..utils_squad import (
    RawResult,
    RawResultExtended,
Aymeric Augustin's avatar
Aymeric Augustin committed
55
56
57
    convert_examples_to_features,
    read_squad_examples,
    write_predictions,
58
59
    write_predictions_extended,
)
60
61
62
63

# The follwing import is the official SQuAD evaluation script (2.0).
# You can remove it from the dependencies if you are using this script outside of the library
# We've added it here for automated tests (see examples/test_examples.py file)
Aymeric Augustin's avatar
Aymeric Augustin committed
64
65
66
67
68
69
from ..utils_squad_evaluate import EVAL_OPTS
from ..utils_squad_evaluate import main as evaluate_on_squad


try:
    from torch.utils.tensorboard import SummaryWriter
70
except ImportError:
Aymeric Augustin's avatar
Aymeric Augustin committed
71
72
    from tensorboardX import SummaryWriter

73
74
75

logger = logging.getLogger(__name__)

76
77
78
ALL_MODELS = sum(
    (tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig)), ()
)
79
80

MODEL_CLASSES = {
81
82
83
84
    "bert": (BertConfig, BertForQuestionAnswering, BertTokenizer),
    "xlnet": (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
    "xlm": (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
    "distilbert": (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer),
85
86
}

87

88
89
90
91
92
93
94
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

95

96
97
98
def to_list(tensor):
    return tensor.detach().cpu().tolist()

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
def train(args, train_dataset, model, tokenizer, teacher=None):
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
116
    no_decay = ["bias", "LayerNorm.weight"]
117
    optimizer_grouped_parameters = [
118
119
120
121
122
123
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
124
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
125
126
127
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
128
129
130
131
132
133
134
135
136
137
138
139
140
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
141
142
143
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
144
145
146
147
148
149

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
150
151
152
153
154
155
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
            if teacher is not None:
                teacher.eval()
            batch = tuple(t.to(args.device) for t in batch)
171
172
173
174
175
176
177
178
179
180
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "start_positions": batch[3],
                "end_positions": batch[4],
            }
            if args.model_type != "distilbert":
                inputs["token_type_ids"] = None if args.model_type == "xlm" else batch[2]
            if args.model_type in ["xlnet", "xlm"]:
                inputs.update({"cls_index": batch[5], "p_mask": batch[6]})
181
182
183
184
185
            outputs = model(**inputs)
            loss, start_logits_stu, end_logits_stu = outputs

            # Distillation loss
            if teacher is not None:
186
187
                if "token_type_ids" not in inputs:
                    inputs["token_type_ids"] = None if args.teacher_type == "xlm" else batch[2]
188
                with torch.no_grad():
189
190
191
192
193
                    start_logits_tea, end_logits_tea = teacher(
                        input_ids=inputs["input_ids"],
                        token_type_ids=inputs["token_type_ids"],
                        attention_mask=inputs["attention_mask"],
                    )
194
195
196
                assert start_logits_tea.size() == start_logits_stu.size()
                assert end_logits_tea.size() == end_logits_stu.size()

197
198
199
200
201
202
203
204
205
206
207
208
                loss_fct = nn.KLDivLoss(reduction="batchmean")
                loss_start = loss_fct(
                    F.log_softmax(start_logits_stu / args.temperature, dim=-1),
                    F.softmax(start_logits_tea / args.temperature, dim=-1),
                ) * (args.temperature ** 2)
                loss_end = loss_fct(
                    F.log_softmax(end_logits_stu / args.temperature, dim=-1),
                    F.softmax(end_logits_tea / args.temperature, dim=-1),
                ) * (args.temperature ** 2)
                loss_ce = (loss_start + loss_end) / 2.0

                loss = args.alpha_ce * loss_ce + args.alpha_squad * loss
209
210

            if args.n_gpu > 1:
211
                loss = loss.mean()  # mean() to average on multi-gpu parallel (not distributed) training
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
            else:
                loss.backward()
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
232
233
234
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
235
236
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
237
238
239
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
240
241
242
243
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
244
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
245
246
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
247
248
249
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
250
                    model_to_save.save_pretrained(output_dir)
251
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    all_results = []
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
287
288
289
            inputs = {"input_ids": batch[0], "attention_mask": batch[1]}
            if args.model_type != "distilbert":
                inputs["token_type_ids"] = None if args.model_type == "xlm" else batch[2]  # XLM don't use segment_ids
290
            example_indices = batch[3]
291
292
            if args.model_type in ["xlnet", "xlm"]:
                inputs.update({"cls_index": batch[4], "p_mask": batch[5]})
293
294
295
296
297
            outputs = model(**inputs)

        for i, example_index in enumerate(example_indices):
            eval_feature = features[example_index.item()]
            unique_id = int(eval_feature.unique_id)
298
            if args.model_type in ["xlnet", "xlm"]:
299
                # XLNet uses a more complex post-processing procedure
300
301
302
303
304
305
306
307
                result = RawResultExtended(
                    unique_id=unique_id,
                    start_top_log_probs=to_list(outputs[0][i]),
                    start_top_index=to_list(outputs[1][i]),
                    end_top_log_probs=to_list(outputs[2][i]),
                    end_top_index=to_list(outputs[3][i]),
                    cls_logits=to_list(outputs[4][i]),
                )
308
            else:
309
310
311
                result = RawResult(
                    unique_id=unique_id, start_logits=to_list(outputs[0][i]), end_logits=to_list(outputs[1][i])
                )
312
313
314
315
316
317
318
319
320
321
            all_results.append(result)

    # Compute predictions
    output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
    if args.version_2_with_negative:
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
    else:
        output_null_log_odds_file = None

322
    if args.model_type in ["xlnet", "xlm"]:
323
        # XLNet uses a more complex post-processing procedure
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
        write_predictions_extended(
            examples,
            features,
            all_results,
            args.n_best_size,
            args.max_answer_length,
            output_prediction_file,
            output_nbest_file,
            output_null_log_odds_file,
            args.predict_file,
            model.config.start_n_top,
            model.config.end_n_top,
            args.version_2_with_negative,
            tokenizer,
            args.verbose_logging,
        )
340
    else:
341
342
343
344
345
346
347
348
349
350
351
352
353
354
        write_predictions(
            examples,
            features,
            all_results,
            args.n_best_size,
            args.max_answer_length,
            args.do_lower_case,
            output_prediction_file,
            output_nbest_file,
            output_null_log_odds_file,
            args.verbose_logging,
            args.version_2_with_negative,
            args.null_score_diff_threshold,
        )
355
356

    # Evaluate with the official SQuAD script
357
358
359
    evaluate_options = EVAL_OPTS(
        data_file=args.predict_file, pred_file=output_prediction_file, na_prob_file=output_null_log_odds_file
    )
360
361
362
363
364
365
366
367
368
369
    results = evaluate_on_squad(evaluate_options)
    return results


def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
    if args.local_rank not in [-1, 0] and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Load data features from cache or dataset file
    input_file = args.predict_file if evaluate else args.train_file
370
371
372
373
374
375
376
377
    cached_features_file = os.path.join(
        os.path.dirname(input_file),
        "cached_{}_{}_{}".format(
            "dev" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
        ),
    )
378
379
380
381
382
    if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset file at %s", input_file)
383
384
385
386
387
388
389
390
391
392
393
        examples = read_squad_examples(
            input_file=input_file, is_training=not evaluate, version_2_with_negative=args.version_2_with_negative
        )
        features = convert_examples_to_features(
            examples=examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=not evaluate,
        )
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

    if args.local_rank == 0 and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
    all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long)
    all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float)
    if evaluate:
        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
409
410
411
        dataset = TensorDataset(
            all_input_ids, all_input_mask, all_segment_ids, all_example_index, all_cls_index, all_p_mask
        )
412
413
414
    else:
        all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
415
416
417
418
419
420
421
422
423
        dataset = TensorDataset(
            all_input_ids,
            all_input_mask,
            all_segment_ids,
            all_start_positions,
            all_end_positions,
            all_cls_index,
            all_p_mask,
        )
424
425
426
427
428
429
430
431
432

    if output_examples:
        return dataset, examples, features
    return dataset


def main():
    parser = argparse.ArgumentParser()

433
    # Required parameters
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
    parser.add_argument(
        "--train_file", default=None, type=str, required=True, help="SQuAD json for training. E.g., train-v1.1.json"
    )
    parser.add_argument(
        "--predict_file",
        default=None,
        type=str,
        required=True,
        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json",
    )
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints and predictions will be written.",
    )
465
466

    # Distillation parameters (optional)
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
    parser.add_argument(
        "--teacher_type",
        default=None,
        type=str,
        help="Teacher type. Teacher tokenizer and student (model) tokenizer must output the same tokenization. Only for distillation.",
    )
    parser.add_argument(
        "--teacher_name_or_path",
        default=None,
        type=str,
        help="Path to the already SQuAD fine-tuned teacher model. Only for distillation.",
    )
    parser.add_argument(
        "--alpha_ce", default=0.5, type=float, help="Distillation loss linear weight. Only for distillation."
    )
    parser.add_argument(
        "--alpha_squad", default=0.5, type=float, help="True SQuAD loss linear weight. Only for distillation."
    )
    parser.add_argument(
        "--temperature", default=2.0, type=float, help="Distillation temperature. Only for distillation."
    )
488

489
    # Other parameters
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )

    parser.add_argument(
        "--version_2_with_negative",
        action="store_true",
        help="If true, the SQuAD examples contain some that do not have an answer.",
    )
    parser.add_argument(
        "--null_score_diff_threshold",
        type=float,
        default=0.0,
        help="If null_score - best_non_null is greater than the threshold predict null.",
    )

    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded.",
    )
    parser.add_argument(
        "--doc_stride",
        default=128,
        type=int,
        help="When splitting up a long document into chunks, how much stride to take between chunks.",
    )
    parser.add_argument(
        "--max_query_length",
        default=64,
        type=int,
        help="The maximum number of tokens for the question. Questions longer than this will "
        "be truncated to this length.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
    parser.add_argument(
        "--n_best_size",
        default=20,
        type=int,
        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.",
    )
    parser.add_argument(
        "--max_answer_length",
        default=30,
        type=int,
        help="The maximum length of an answer that can be generated. This is needed because the start "
        "and end predictions are not conditioned on one another.",
    )
    parser.add_argument(
        "--verbose_logging",
        action="store_true",
        help="If true, all of the warnings related to data processing will be printed. "
        "A number of warnings are expected for a normal SQuAD evaluation.",
    )

    parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
622
623
    args = parser.parse_args()

624
625
626
627
628
629
630
631
632
633
634
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
635
636
637
638
639

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
640

641
642
643
644
645
646
647
648
649
650
651
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
652
        torch.distributed.init_process_group(backend="nccl")
653
654
655
656
        args.n_gpu = 1
    args.device = device

    # Setup logging
657
658
659
660
661
662
663
664
665
666
667
668
669
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
670
671
672
673
674
675
676
677
678
679

    # Set seed
    set_seed(args)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
695
696
697

    if args.teacher_type is not None:
        assert args.teacher_name_or_path is not None
698
699
700
        assert args.alpha_ce > 0.0
        assert args.alpha_ce + args.alpha_squad > 0.0
        assert args.teacher_type != "distilbert", "We constraint teachers not to be of type DistilBERT."
701
        teacher_config_class, teacher_model_class, _ = MODEL_CLASSES[args.teacher_type]
702
703
704
705
706
707
        teacher_config = teacher_config_class.from_pretrained(
            args.teacher_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None
        )
        teacher = teacher_model_class.from_pretrained(
            args.teacher_name_or_path, config=teacher_config, cache_dir=args.cache_dir if args.cache_dir else None
        )
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
        teacher.to(args.device)
    else:
        teacher = None

    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
        global_step, tr_loss = train(args, train_dataset, model, tokenizer, teacher=teacher)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

    # Save the trained model and the tokenizer
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
734
735
736
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
737
738
739
740
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
741
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
742
743

        # Load a trained model and vocabulary that you have fine-tuned
thomwolf's avatar
thomwolf committed
744
        model = model_class.from_pretrained(args.output_dir, cache_dir=args.cache_dir if args.cache_dir else None)
745
746
747
        tokenizer = tokenizer_class.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None
        )
748
749
750
751
752
753
754
        model.to(args.device)

    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
755
756
757
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
758
759
760
761
762
763
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce model loading logs

        logger.info("Evaluate the following checkpoints: %s", checkpoints)

        for checkpoint in checkpoints:
            # Reload the model
764
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
thomwolf's avatar
thomwolf committed
765
            model = model_class.from_pretrained(checkpoint, cache_dir=args.cache_dir if args.cache_dir else None)
766
767
768
769
770
            model.to(args.device)

            # Evaluate
            result = evaluate(args, model, tokenizer, prefix=global_step)

771
            result = dict((k + ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items())
772
773
774
775
776
777
778
779
780
            results.update(result)

    logger.info("Results: {}".format(results))

    return results


if __name__ == "__main__":
    main()