test_modeling_pop2piano.py 31.1 KB
Newer Older
Susnato Dhar's avatar
Susnato Dhar committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Pop2Piano model. """

import copy
import tempfile
import unittest

import numpy as np
from datasets import load_dataset

from transformers import Pop2PianoConfig
from transformers.feature_extraction_utils import BatchFeature
from transformers.testing_utils import (
    require_essentia,
    require_librosa,
    require_onnx,
    require_scipy,
    require_torch,
    slow,
    torch_device,
)
from transformers.utils import is_essentia_available, is_librosa_available, is_scipy_available, is_torch_available

from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor


if is_torch_available():
    import torch

    from transformers import Pop2PianoForConditionalGeneration
    from transformers.models.pop2piano.modeling_pop2piano import POP2PIANO_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.pytorch_utils import is_torch_1_8_0

else:
    is_torch_1_8_0 = False


@require_torch
class Pop2PianoModelTester:
    def __init__(
        self,
        parent,
        vocab_size=99,
        batch_size=13,
        encoder_seq_length=7,
        decoder_seq_length=9,
        # For common tests
        is_training=False,
        use_attention_mask=True,
        use_labels=True,
        hidden_size=64,
        num_hidden_layers=5,
        num_attention_heads=4,
        d_ff=37,
        relative_attention_num_buckets=8,
        dropout_rate=0.1,
        initializer_factor=0.002,
        eos_token_id=1,
        pad_token_id=0,
        decoder_start_token_id=0,
        scope=None,
        decoder_layers=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.encoder_seq_length = encoder_seq_length
        self.decoder_seq_length = decoder_seq_length
        # For common tests
        self.seq_length = self.decoder_seq_length
        self.is_training = is_training
        self.use_attention_mask = use_attention_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.d_ff = d_ff
        self.relative_attention_num_buckets = relative_attention_num_buckets
        self.dropout_rate = dropout_rate
        self.initializer_factor = initializer_factor
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.decoder_start_token_id = decoder_start_token_id
        self.scope = None
        self.decoder_layers = decoder_layers

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
        decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

        attention_mask = None
        decoder_attention_mask = None
        if self.use_attention_mask:
            attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
            decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)

        lm_labels = (
            ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) if self.use_labels else None
        )

        return self.get_config(), input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels

    def get_pipeline_config(self):
        return Pop2PianoConfig(
            vocab_size=166,  # Pop2Piano forces 100 extra tokens
            d_model=self.hidden_size,
            d_ff=self.d_ff,
            d_kv=self.hidden_size // self.num_attention_heads,
            num_layers=self.num_hidden_layers,
            num_decoder_layers=self.decoder_layers,
            num_heads=self.num_attention_heads,
            relative_attention_num_buckets=self.relative_attention_num_buckets,
            dropout_rate=self.dropout_rate,
            initializer_factor=self.initializer_factor,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.pad_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.decoder_start_token_id,
        )

    def get_config(self):
        return Pop2PianoConfig(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            d_ff=self.d_ff,
            d_kv=self.hidden_size // self.num_attention_heads,
            num_layers=self.num_hidden_layers,
            num_decoder_layers=self.decoder_layers,
            num_heads=self.num_attention_heads,
            relative_attention_num_buckets=self.relative_attention_num_buckets,
            dropout_rate=self.dropout_rate,
            initializer_factor=self.initializer_factor,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.pad_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.decoder_start_token_id,
        )

    def check_prepare_lm_labels_via_shift_left(
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
    ):
        model = Pop2PianoForConditionalGeneration(config=config)
        model.to(torch_device)
        model.eval()

        # make sure that lm_labels are correctly padded from the right
        lm_labels.masked_fill_((lm_labels == self.decoder_start_token_id), self.eos_token_id)

        # add causal pad token mask
        triangular_mask = torch.tril(lm_labels.new_ones(lm_labels.shape)).logical_not()
        lm_labels.masked_fill_(triangular_mask, self.pad_token_id)
        decoder_input_ids = model._shift_right(lm_labels)

        for i, (decoder_input_ids_slice, lm_labels_slice) in enumerate(zip(decoder_input_ids, lm_labels)):
            # first item
            self.parent.assertEqual(decoder_input_ids_slice[0].item(), self.decoder_start_token_id)
            if i < decoder_input_ids_slice.shape[-1]:
                if i < decoder_input_ids.shape[-1] - 1:
                    # items before diagonal
                    self.parent.assertListEqual(
                        decoder_input_ids_slice[1 : i + 1].tolist(), lm_labels_slice[:i].tolist()
                    )
                # pad items after diagonal
                if i < decoder_input_ids.shape[-1] - 2:
                    self.parent.assertListEqual(
                        decoder_input_ids_slice[i + 2 :].tolist(), lm_labels_slice[i + 1 : -1].tolist()
                    )
            else:
                # all items after square
                self.parent.assertListEqual(decoder_input_ids_slice[1:].tolist(), lm_labels_slice[:-1].tolist())

    def create_and_check_model(
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
    ):
        model = Pop2PianoForConditionalGeneration(config=config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )
        result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
        decoder_past = result.past_key_values
        encoder_output = result.encoder_last_hidden_state

        self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size))
        # There should be `num_layers` key value embeddings stored in decoder_past
        self.parent.assertEqual(len(decoder_past), config.num_layers)
        # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
        self.parent.assertEqual(len(decoder_past[0]), 4)

    def create_and_check_with_lm_head(
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
    ):
        model = Pop2PianoForConditionalGeneration(config=config).to(torch_device).eval()
        outputs = model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            labels=lm_labels,
        )
        self.parent.assertEqual(len(outputs), 4)
        self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.decoder_seq_length, self.vocab_size))
        self.parent.assertEqual(outputs["loss"].size(), ())

    def create_and_check_decoder_model_past(
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
    ):
        model = Pop2PianoForConditionalGeneration(config=config).get_decoder().to(torch_device).eval()
        # first forward pass
        outputs = model(input_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids)
        outputs_no_past = model(input_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

        output, past_key_values = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)

        output_from_no_past = model(next_input_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_decoder_model_attention_mask_past(
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
    ):
        model = Pop2PianoForConditionalGeneration(config=config).get_decoder()
        model.to(torch_device)
        model.eval()

        # create attention mask
        attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)

        half_seq_length = input_ids.shape[-1] // 2
        attn_mask[:, half_seq_length:] = 0

        # first forward pass
        output, past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True).to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
        input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens

        # append to next input_ids and attn_mask
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        attn_mask = torch.cat(
            [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
            dim=1,
        )

        # get two different outputs
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past_key_values, attention_mask=attn_mask)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
    ):
        model = Pop2PianoForConditionalGeneration(config=config).get_decoder().to(torch_device).eval()
        # first forward pass
        outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)

        output, past_key_values = outputs.to_tuple()

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([attention_mask, next_mask], dim=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_generate_with_past_key_values(
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
    ):
        model = Pop2PianoForConditionalGeneration(config=config).to(torch_device).eval()
        torch.manual_seed(0)
        output_without_past_cache = model.generate(
            input_ids[:1], num_beams=2, max_length=5, do_sample=True, use_cache=False
        )
        torch.manual_seed(0)
        output_with_past_cache = model.generate(input_ids[:1], num_beams=2, max_length=5, do_sample=True)
        self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache))

    def create_and_check_model_fp16_forward(
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
    ):
        model = Pop2PianoForConditionalGeneration(config=config).to(torch_device).half().eval()
        output = model(input_ids, decoder_input_ids=input_ids, attention_mask=attention_mask)[
            "encoder_last_hidden_state"
        ]
        self.parent.assertFalse(torch.isnan(output).any().item())

    def create_and_check_encoder_decoder_shared_weights(
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
    ):
        for model_class in [Pop2PianoForConditionalGeneration]:
            torch.manual_seed(0)
            model = model_class(config=config).to(torch_device).eval()
            # load state dict copies weights but does not tie them
            model.encoder.load_state_dict(model.decoder.state_dict(), strict=False)

            torch.manual_seed(0)
            tied_config = copy.deepcopy(config)
            tied_config.tie_encoder_decoder = True
            tied_model = model_class(config=tied_config).to(torch_device).eval()

            model_result = model(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
                decoder_attention_mask=decoder_attention_mask,
            )

            tied_model_result = tied_model(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
                decoder_attention_mask=decoder_attention_mask,
            )

            # check that models has less parameters
            self.parent.assertLess(
                sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters())
            )
            random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item()

            # check that outputs are equal
            self.parent.assertTrue(
                torch.allclose(
                    model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4
                )
            )

            # check that outputs after saving and loading are equal
            with tempfile.TemporaryDirectory() as tmpdirname:
                tied_model.save_pretrained(tmpdirname)
                tied_model = model_class.from_pretrained(tmpdirname)
                tied_model.to(torch_device)
                tied_model.eval()

                # check that models has less parameters
                self.parent.assertLess(
                    sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters())
                )
                random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item()

                tied_model_result = tied_model(
                    input_ids=input_ids,
                    decoder_input_ids=decoder_input_ids,
                    attention_mask=attention_mask,
                    decoder_attention_mask=decoder_attention_mask,
                )

                # check that outputs are equal
                self.parent.assertTrue(
                    torch.allclose(
                        model_result[0][0, :, random_slice_idx],
                        tied_model_result[0][0, :, random_slice_idx],
                        atol=1e-4,
                    )
                )

    def check_resize_embeddings_pop2piano_v1_1(
        self,
        config,
    ):
        prev_vocab_size = config.vocab_size

        config.tie_word_embeddings = False
        model = Pop2PianoForConditionalGeneration(config=config).to(torch_device).eval()
        model.resize_token_embeddings(prev_vocab_size - 10)

        self.parent.assertEqual(model.get_input_embeddings().weight.shape[0], prev_vocab_size - 10)
        self.parent.assertEqual(model.get_output_embeddings().weight.shape[0], prev_vocab_size - 10)
        self.parent.assertEqual(model.config.vocab_size, prev_vocab_size - 10)

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            decoder_input_ids,
            attention_mask,
            decoder_attention_mask,
            lm_labels,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "decoder_input_ids": decoder_input_ids,
            "decoder_attention_mask": decoder_attention_mask,
            "use_cache": False,
        }
        return config, inputs_dict


@require_torch
class Pop2PianoModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
    all_model_classes = (Pop2PianoForConditionalGeneration,) if is_torch_available() else ()
    all_generative_model_classes = ()
    all_parallelizable_model_classes = ()
    fx_compatible = False
    test_pruning = False
    test_resize_embeddings = True
    test_model_parallel = False
    is_encoder_decoder = True

    def setUp(self):
        self.model_tester = Pop2PianoModelTester(self)
        self.config_tester = ConfigTester(self, config_class=Pop2PianoConfig, d_model=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_shift_right(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_prepare_lm_labels_via_shift_left(*config_and_inputs)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_model_v1_1(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        # check that gated gelu feed forward and different word embeddings work
        config = config_and_inputs[0]
        config.tie_word_embeddings = False
        config.feed_forward_proj = "gated-gelu"
        self.model_tester.create_and_check_model(config, *config_and_inputs[1:])

    def test_config_and_model_silu_gated(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        config = config_and_inputs[0]
        config.feed_forward_proj = "gated-silu"
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_with_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_with_lm_head(*config_and_inputs)

    def test_decoder_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)

    def test_decoder_model_past_with_attn_mask(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs)

    def test_decoder_model_past_with_3d_attn_mask(self):
        (
            config,
            input_ids,
            decoder_input_ids,
            attention_mask,
            decoder_attention_mask,
            lm_labels,
        ) = self.model_tester.prepare_config_and_inputs()

        attention_mask = ids_tensor(
            [self.model_tester.batch_size, self.model_tester.encoder_seq_length, self.model_tester.encoder_seq_length],
            vocab_size=2,
        )
        decoder_attention_mask = ids_tensor(
            [self.model_tester.batch_size, self.model_tester.decoder_seq_length, self.model_tester.decoder_seq_length],
            vocab_size=2,
        )

        self.model_tester.create_and_check_decoder_model_attention_mask_past(
            config,
            input_ids,
            decoder_input_ids,
            attention_mask,
            decoder_attention_mask,
            lm_labels,
        )

    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

    def test_encoder_decoder_shared_weights(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_encoder_decoder_shared_weights(*config_and_inputs)

    @unittest.skipIf(torch_device == "cpu", "Cant do half precision")
    def test_model_fp16_forward(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs)

    def test_v1_1_resize_embeddings(self):
        config = self.model_tester.prepare_config_and_inputs()[0]
        self.model_tester.check_resize_embeddings_pop2piano_v1_1(config)

    @slow
    def test_model_from_pretrained(self):
        for model_name in POP2PIANO_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = Pop2PianoForConditionalGeneration.from_pretrained(model_name)
            self.assertIsNotNone(model)

    @require_onnx
    @unittest.skipIf(
        is_torch_1_8_0,
        reason="Test has a segmentation fault on torch 1.8.0",
    )
    def test_export_to_onnx(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        model = Pop2PianoForConditionalGeneration(config_and_inputs[0]).to(torch_device)
        with tempfile.TemporaryDirectory() as tmpdirname:
            torch.onnx.export(
                model,
                (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]),
                f"{tmpdirname}/Pop2Piano_test.onnx",
                export_params=True,
                opset_version=9,
                input_names=["input_ids", "decoder_input_ids"],
            )

    def test_pass_with_input_features(self):
        input_features = BatchFeature(
            {
                "input_features": torch.rand((75, 100, 512)).type(torch.float32),
                "beatsteps": torch.randint(size=(1, 955), low=0, high=100).type(torch.float32),
                "extrapolated_beatstep": torch.randint(size=(1, 900), low=0, high=100).type(torch.float32),
            }
        )
        model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano")
        model_opts = model.generate(input_features=input_features["input_features"], return_dict_in_generate=True)

        self.assertEqual(model_opts.sequences.ndim, 2)

    def test_pass_with_batched_input_features(self):
        input_features = BatchFeature(
            {
                "input_features": torch.rand((220, 70, 512)).type(torch.float32),
                "beatsteps": torch.randint(size=(5, 955), low=0, high=100).type(torch.float32),
                "extrapolated_beatstep": torch.randint(size=(5, 900), low=0, high=100).type(torch.float32),
                "attention_mask": torch.concatenate(
                    [
                        torch.ones([120, 70], dtype=torch.int32),
                        torch.zeros([1, 70], dtype=torch.int32),
                        torch.ones([50, 70], dtype=torch.int32),
                        torch.zeros([1, 70], dtype=torch.int32),
                        torch.ones([47, 70], dtype=torch.int32),
                        torch.zeros([1, 70], dtype=torch.int32),
                    ],
                    axis=0,
                ),
                "attention_mask_beatsteps": torch.ones((5, 955)).type(torch.int32),
                "attention_mask_extrapolated_beatstep": torch.ones((5, 900)).type(torch.int32),
            }
        )
        model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano")
        model_opts = model.generate(
            input_features=input_features["input_features"],
            attention_mask=input_features["attention_mask"],
            return_dict_in_generate=True,
        )

        self.assertEqual(model_opts.sequences.ndim, 2)


@require_torch
class Pop2PianoModelIntegrationTests(unittest.TestCase):
    @slow
    def test_mel_conditioner_integration(self):
        composer = "composer1"
        model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano")
        input_embeds = torch.ones([10, 100, 512])

        composer_value = model.generation_config.composer_to_feature_token[composer]
        composer_value = torch.tensor(composer_value)
        composer_value = composer_value.repeat(input_embeds.size(0))
        outputs = model.mel_conditioner(
            input_embeds, composer_value, min(model.generation_config.composer_to_feature_token.values())
        )

        # check shape
        self.assertEqual(outputs.size(), torch.Size([10, 101, 512]))

        # check values
        EXPECTED_OUTPUTS = torch.tensor(
            [[1.0475305318832397, 0.29052114486694336, -0.47778210043907166], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]
        )

        self.assertTrue(torch.allclose(outputs[0, :3, :3], EXPECTED_OUTPUTS, atol=1e-4))

    @slow
    @require_essentia
    @require_librosa
    @require_scipy
    def test_full_model_integration(self):
        if is_librosa_available() and is_scipy_available() and is_essentia_available() and is_torch_available():
            from transformers import Pop2PianoProcessor

            speech_input1 = np.zeros([1_000_000], dtype=np.float32)
            sampling_rate = 44_100

            processor = Pop2PianoProcessor.from_pretrained("sweetcocoa/pop2piano")
            input_features = processor.feature_extractor(
                speech_input1, sampling_rate=sampling_rate, return_tensors="pt"
            )

            model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano")
            outputs = model.generate(
                input_features=input_features["input_features"], return_dict_in_generate=True
            ).sequences

            # check for shapes
            self.assertEqual(outputs.size(0), 70)

            # check for values
            self.assertEqual(outputs[0, :2].detach().cpu().numpy().tolist(), [0, 1])

    # This is the test for a real music from K-Pop genre.
    @slow
    @require_essentia
    @require_librosa
    @require_scipy
    def test_real_music(self):
        if is_librosa_available() and is_scipy_available() and is_essentia_available() and is_torch_available():
            from transformers import Pop2PianoFeatureExtractor, Pop2PianoTokenizer

737
            model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano")
Susnato Dhar's avatar
Susnato Dhar committed
738
            model.eval()
739
740
            feature_extractor = Pop2PianoFeatureExtractor.from_pretrained("sweetcocoa/pop2piano")
            tokenizer = Pop2PianoTokenizer.from_pretrained("sweetcocoa/pop2piano")
Susnato Dhar's avatar
Susnato Dhar committed
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
            ds = load_dataset("sweetcocoa/pop2piano_ci", split="test")

            output_fe = feature_extractor(
                ds["audio"][0]["array"], sampling_rate=ds["audio"][0]["sampling_rate"], return_tensors="pt"
            )
            output_model = model.generate(input_features=output_fe["input_features"], composer="composer1")
            output_tokenizer = tokenizer.batch_decode(token_ids=output_model, feature_extractor_output=output_fe)
            pretty_midi_object = output_tokenizer["pretty_midi_objects"][0]

            # Checking if no of notes are same
            self.assertEqual(len(pretty_midi_object.instruments[0].notes), 59)
            predicted_timings = []
            for i in pretty_midi_object.instruments[0].notes:
                predicted_timings.append(i.start)

            # Checking note start timings(first 6)
            EXPECTED_START_TIMINGS = [
                0.4876190423965454,
                0.7314285635948181,
                0.9752380847930908,
                1.4396371841430664,
                1.6718367338180542,
                1.904036283493042,
            ]

            np.allclose(EXPECTED_START_TIMINGS, predicted_timings[:6])

            # Checking note end timings(last 6)
            EXPECTED_END_TIMINGS = [
                12.341403007507324,
                12.567797183990479,
                12.567797183990479,
                12.567797183990479,
                12.794191360473633,
                12.794191360473633,
            ]

            np.allclose(EXPECTED_END_TIMINGS, predicted_timings[-6:])