test_modeling_albert.py 14 KB
Newer Older
Lysandre's avatar
Lysandre committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

Lysandre's avatar
Lysandre committed
16

17
18
import unittest

Lysandre's avatar
Lysandre committed
19
20
from transformers import is_torch_available

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_common import ModelTesterMixin, ids_tensor
23
from .utils import require_torch, slow, torch_device
Lysandre's avatar
Lysandre committed
24

Aymeric Augustin's avatar
Aymeric Augustin committed
25

Lysandre's avatar
Lysandre committed
26
if is_torch_available():
27
28
29
    from transformers import (
        AlbertConfig,
        AlbertModel,
30
        AlbertForPreTraining,
31
        AlbertForMaskedLM,
32
        AlbertForMultipleChoice,
33
        AlbertForSequenceClassification,
34
        AlbertForTokenClassification,
35
36
        AlbertForQuestionAnswering,
    )
37
    from transformers.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
Lysandre's avatar
Lysandre committed
38
39


40
@require_torch
41
class AlbertModelTest(ModelTesterMixin, unittest.TestCase):
Lysandre's avatar
Lysandre committed
42

43
44
45
46
47
48
49
50
51
52
53
54
55
    all_model_classes = (
        (
            AlbertModel,
            AlbertForPreTraining,
            AlbertForMaskedLM,
            AlbertForMultipleChoice,
            AlbertForSequenceClassification,
            AlbertForTokenClassification,
            AlbertForQuestionAnswering,
        )
        if is_torch_available()
        else ()
    )
Lysandre's avatar
Lysandre committed
56
57

    class AlbertModelTester(object):
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_token_type_ids=True,
            use_labels=True,
            vocab_size=99,
            embedding_size=16,
            hidden_size=36,
            num_hidden_layers=6,
            num_hidden_groups=6,
            num_attention_heads=6,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
Lysandre's avatar
Lysandre committed
85
86
87
88
89
90
91
92
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
Lysandre's avatar
Lysandre committed
93
            self.embedding_size = embedding_size
Lysandre's avatar
Lysandre committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope
Lysandre's avatar
Lysandre committed
108
            self.num_hidden_groups = num_hidden_groups
Lysandre's avatar
Lysandre committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = AlbertConfig(
thomwolf's avatar
thomwolf committed
130
                vocab_size=self.vocab_size,
Lysandre's avatar
Lysandre committed
131
132
133
134
135
136
137
138
139
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                hidden_act=self.hidden_act,
                hidden_dropout_prob=self.hidden_dropout_prob,
                attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
                type_vocab_size=self.type_vocab_size,
Lysandre's avatar
Lysandre committed
140
                initializer_range=self.initializer_range,
141
142
                num_hidden_groups=self.num_hidden_groups,
            )
Lysandre's avatar
Lysandre committed
143
144
145
146

            return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

        def check_loss_output(self, result):
147
            self.parent.assertListEqual(list(result["loss"].size()), [])
Lysandre's avatar
Lysandre committed
148

149
150
151
        def create_and_check_albert_model(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
Lysandre's avatar
Lysandre committed
152
            model = AlbertModel(config=config)
153
            model.to(torch_device)
Lysandre's avatar
Lysandre committed
154
155
156
157
158
159
160
161
162
163
            model.eval()
            sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
            sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
            sequence_output, pooled_output = model(input_ids)

            result = {
                "sequence_output": sequence_output,
                "pooled_output": pooled_output,
            }
            self.parent.assertListEqual(
164
165
                list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
            )
Lysandre's avatar
Lysandre committed
166
167
            self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])

168
169
170
171
172
173
174
175
176
177
        def create_and_check_albert_for_pretraining(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            model = AlbertForPreTraining(config=config)
            model.to(torch_device)
            model.eval()
            loss, prediction_scores, sop_scores = model(
                input_ids,
                attention_mask=input_mask,
                token_type_ids=token_type_ids,
178
                labels=token_labels,
179
180
181
182
183
184
185
186
187
188
189
190
191
                sentence_order_label=sequence_labels,
            )
            result = {
                "loss": loss,
                "prediction_scores": prediction_scores,
                "sop_scores": sop_scores,
            }
            self.parent.assertListEqual(
                list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
            self.parent.assertListEqual(list(result["sop_scores"].size()), [self.batch_size, config.num_labels])
            self.check_loss_output(result)

192
193
194
        def create_and_check_albert_for_masked_lm(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
Lysandre's avatar
Lysandre committed
195
            model = AlbertForMaskedLM(config=config)
196
            model.to(torch_device)
Lysandre's avatar
Lysandre committed
197
            model.eval()
198
            loss, prediction_scores = model(
199
                input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
200
            )
Lysandre's avatar
Lysandre committed
201
202
203
204
205
            result = {
                "loss": loss,
                "prediction_scores": prediction_scores,
            }
            self.parent.assertListEqual(
206
207
                list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
            )
Lysandre's avatar
Lysandre committed
208
209
            self.check_loss_output(result)

210
211
212
        def create_and_check_albert_for_question_answering(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
213
            model = AlbertForQuestionAnswering(config=config)
214
            model.to(torch_device)
215
            model.eval()
216
217
218
219
220
221
222
            loss, start_logits, end_logits = model(
                input_ids,
                attention_mask=input_mask,
                token_type_ids=token_type_ids,
                start_positions=sequence_labels,
                end_positions=sequence_labels,
            )
223
224
225
226
227
            result = {
                "loss": loss,
                "start_logits": start_logits,
                "end_logits": end_logits,
            }
228
229
            self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
            self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
230
231
            self.check_loss_output(result)

232
233
234
        def create_and_check_albert_for_sequence_classification(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
235
236
            config.num_labels = self.num_labels
            model = AlbertForSequenceClassification(config)
237
            model.to(torch_device)
238
            model.eval()
239
240
241
            loss, logits = model(
                input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels
            )
242
243
244
245
            result = {
                "loss": loss,
                "logits": logits,
            }
246
            self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_labels])
247
248
            self.check_loss_output(result)

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        def create_and_check_albert_for_token_classification(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            config.num_labels = self.num_labels
            model = AlbertForTokenClassification(config=config)
            model.to(torch_device)
            model.eval()
            loss, logits = model(
                input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
            )
            result = {
                "loss": loss,
                "logits": logits,
            }
            self.parent.assertListEqual(
                list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels]
            )
            self.check_loss_output(result)

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
        def create_and_check_albert_for_multiple_choice(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            config.num_choices = self.num_choices
            model = AlbertForMultipleChoice(config=config)
            model.to(torch_device)
            model.eval()
            multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
            multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
            multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
            loss, logits = model(
                multiple_choice_inputs_ids,
                attention_mask=multiple_choice_input_mask,
                token_type_ids=multiple_choice_token_type_ids,
                labels=choice_labels,
            )
            result = {
                "loss": loss,
                "logits": logits,
            }
            self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_choices])
            self.check_loss_output(result)

Lysandre's avatar
Lysandre committed
291
292
        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
293
294
295
296
297
298
299
300
301
302
            (
                config,
                input_ids,
                token_type_ids,
                input_mask,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
Lysandre's avatar
Lysandre committed
303
304
305
306
307
308
309
310
311
312
313
314
315
            return config, inputs_dict

    def setUp(self):
        self.model_tester = AlbertModelTest.AlbertModelTester(self)
        self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_albert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_model(*config_and_inputs)

316
317
318
319
    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_pretraining(*config_and_inputs)

Lysandre's avatar
Lysandre committed
320
321
322
323
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_masked_lm(*config_and_inputs)

324
325
326
327
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_multiple_choice(*config_and_inputs)

328
329
330
331
332
333
334
335
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_albert_for_sequence_classification(*config_and_inputs)

336
    @slow
Lysandre's avatar
Lysandre committed
337
    def test_model_from_pretrained(self):
338
        for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
339
            model = AlbertModel.from_pretrained(model_name)
Lysandre's avatar
Lysandre committed
340
            self.assertIsNotNone(model)