test_tokenization_llama.py 28.7 KB
Newer Older
1
# coding=utf-8
Arthur's avatar
Arthur committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
17
import pickle
Arthur's avatar
Arthur committed
18
19
20
21
22
23
24
25
26
27
import shutil
import tempfile
import unittest

from datasets import load_dataset

from transformers import (
    SPIECE_UNDERLINE,
    AddedToken,
    LlamaTokenizer,
28
    LlamaTokenizerFast,
Arthur's avatar
Arthur committed
29
30
    is_torch_available,
)
31
from transformers.convert_slow_tokenizer import convert_slow_tokenizer
Arthur's avatar
Arthur committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
from transformers.testing_utils import (
    get_tests_dir,
    nested_simplify,
    require_sentencepiece,
    require_tokenizers,
    require_torch,
    slow,
)

from ...test_tokenization_common import TokenizerTesterMixin


SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")


if is_torch_available():
    pass


@require_sentencepiece
@require_tokenizers
class LlamaTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = LlamaTokenizer
    test_rust_tokenizer = False
    test_sentencepiece = True
    from_pretrained_kwargs = {}

    def setUp(self):
        super().setUp()

        # We have a SentencePiece fixture for testing
        tokenizer = LlamaTokenizer(SAMPLE_VOCAB, keep_accents=True)
        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.save_pretrained(self.tmpdirname)

    def test_full_tokenizer(self):
        tokenizer = LlamaTokenizer(SAMPLE_VOCAB, keep_accents=True)

        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])

        self.assertListEqual(
            tokenizer.convert_tokens_to_ids(tokens),
            [285, 46, 10, 170, 382],
        )

        tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
        self.assertListEqual(
            tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "9",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "é",
                ".",
            ],
        )
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(
            ids,
            [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4],
        )

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
        self.assertListEqual(
            back_tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "<unk>",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "<unk>",
                ".",
            ],
        )

    @unittest.skip("Let's wait for the fast tokenizer!")
    def test_save_pretrained(self):
        self.tokenizers_list += (self.rust_tokenizer_class, "hf-internal-testing/llama-tokenizer", {})
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)

                # Checks it save with the same files + the tokenizer.json file for the fast one
                self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))
                tokenizer_r_files = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f)
                self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))

                shutil.rmtree(tmpdirname2)

                # Save tokenizer rust, legacy_format=True
                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=True)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)

                # Checks it save with the same files
                self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))

                shutil.rmtree(tmpdirname2)

                # Save tokenizer rust, legacy_format=False
                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=False)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)

                # Checks it saved the tokenizer.json file
                self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))

                shutil.rmtree(tmpdirname2)

    @require_torch
    def test_batch_tokenization(self):
        if not self.test_seq2seq:
            return

        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Longer text that will definitely require truncation.
                text = [
                    " UN Chief Says There Is No Military Solution in Syria",
                    " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for"
                    " Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons"
                    " will only worsen the violence and misery for millions of people.",
                ]
                try:
                    batch = tokenizer(
                        text=text,
                        max_length=3,
                        max_target_length=10,
                        return_tensors="pt",
                    )
                except NotImplementedError:
                    return
                self.assertEqual(batch.input_ids.shape[1], 3)
                # max_target_length will default to max_length if not specified
                batch = tokenizer(text, max_length=3, return_tensors="pt")
                self.assertEqual(batch.input_ids.shape[1], 3)

                batch_encoder_only = tokenizer(text=text, max_length=3, max_target_length=10, return_tensors="pt")
                self.assertEqual(batch_encoder_only.input_ids.shape[1], 3)
                self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3)
                self.assertNotIn("decoder_input_ids", batch_encoder_only)

    @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece.")
    def test_save_slow_from_fast_and_reload_fast(self):
        pass

    def test_special_tokens_initialization(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                added_tokens = [AddedToken("<special>", lstrip=True)]

                tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                    pretrained_name, additional_special_tokens=added_tokens, **kwargs
                )
                r_output = tokenizer_r.encode("Hey this is a <special> token")

                special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0]

                self.assertTrue(special_token_id in r_output)

                if self.test_slow_tokenizer:
                    tokenizer_cr = self.rust_tokenizer_class.from_pretrained(
                        pretrained_name,
                        additional_special_tokens=added_tokens,
                        **kwargs,  # , from_slow=True <- unfortunately too slow to convert
                    )
                    tokenizer_p = self.tokenizer_class.from_pretrained(
                        pretrained_name, additional_special_tokens=added_tokens, **kwargs
                    )

                    p_output = tokenizer_p.encode("Hey this is a <special> token")

                    cr_output = tokenizer_cr.encode("Hey this is a <special> token")

                    self.assertEqual(p_output, r_output)
                    self.assertEqual(cr_output, r_output)
                    self.assertTrue(special_token_id in p_output)
                    self.assertTrue(special_token_id in cr_output)

    @slow
    def test_tokenizer_integration(self):
        # fmt: off
        expected_encoding = {'input_ids': [[1, 4103, 689, 414, 313, 24784, 368, 2998, 408, 282, 3637, 25350, 29899, 9067, 414, 322, 282, 3637, 25350, 29899, 1457, 3018, 1312, 29899, 2151, 29897, 8128, 2498, 29899, 15503, 4220, 6956, 1973, 313, 13635, 29911, 29892, 402, 7982, 29899, 29906, 29892, 1528, 13635, 29911, 29874, 29892, 1060, 26369, 29892, 6652, 309, 29933, 814, 29892, 1060, 29931, 6779, 11410, 363, 18385, 17088, 7634, 11235, 313, 25103, 29965, 29897, 322, 18385, 17088, 28203, 313, 25103, 29954, 29897, 411, 975, 29871, 29941, 29906, 29974, 758, 3018, 1312, 4733, 297, 29871, 29896, 29900, 29900, 29974, 10276, 322, 6483, 1006, 3372, 3097, 1546, 435, 1165, 29892, 10772, 29911, 25350, 322, 323, 6073, 17907, 29889], [1, 350, 20161, 338, 8688, 304, 758, 29899, 14968, 6483, 21000, 8684, 284, 22540, 515, 443, 29880, 24025, 1426, 491, 14002, 368, 4195, 292, 373, 1716, 2175, 322, 1492, 3030, 297, 599, 15359, 29889], [1, 450, 4996, 17354, 1701, 29916, 432, 17204, 975, 278, 17366, 11203, 29889]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}
        # fmt: on

        self.tokenizer_integration_test_util(
            expected_encoding=expected_encoding,
            model_name="hf-internal-testing/llama-tokenizer",
            revision="0984d03108b1a041ed679bd253b6519b7e1a4778",
            padding=False,
        )

289
290
291
292
293
294
295
    def test_picklable(self):
        with tempfile.NamedTemporaryFile() as f:
            shutil.copyfile(SAMPLE_VOCAB, f.name)
            tokenizer = LlamaTokenizer(f.name, keep_accents=True)
            pickled_tokenizer = pickle.dumps(tokenizer)
        pickle.loads(pickled_tokenizer)

296
297
298
299
300
301
302
303
    @unittest.skip("worker 'gw4' crashed on CI, passing locally.")
    def test_pickle_subword_regularization_tokenizer(self):
        pass

    @unittest.skip("worker 'gw4' crashed on CI, passing locally.")
    def test_subword_regularization_tokenizer(self):
        pass

Arthur's avatar
Arthur committed
304
305
306
307
308
309
310

@require_torch
@require_sentencepiece
@require_tokenizers
class LlamaIntegrationTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
311
        checkpoint_name = "hf-internal-testing/llama-tokenizer-non-normalized"
312
313
        cls.tokenizer: LlamaTokenizer = LlamaTokenizer.from_pretrained(checkpoint_name)
        cls.rust_tokenizer = LlamaTokenizerFast.from_pretrained(checkpoint_name)
Arthur's avatar
Arthur committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        return cls

    @require_torch
    def integration_tests(self):
        inputs = self.tokenizer(
            ["The following string should be properly encoded: Hello.", "But ird and ปี   ird   ด"],
            return_tensors="pt",
        )

        self.assertEqual(
            nested_simplify(inputs),
            {
                "input_ids": [
                    [1, 450, 1494, 1347, 881, 367, 6284, 18511, 29901, 15043, 29889],
                    [1, 1205, 29871, 1823, 322, 29871, 31010, 30691, 1678, 1823, 1678, 30718],
                ],
                "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]],
            },
        )

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
    def test_fast_special_tokens(self):
        slow_tokenizer = self.tokenizer
        fast_tokenizer = self.rust_tokenizer
        slow = slow_tokenizer.encode("A sample test", add_special_tokens=True)
        assert slow == [1, 319, 4559, 1243]

        fast_tokenizer.add_eos_token = False
        fast = fast_tokenizer.encode("A sample test", add_special_tokens=True)
        assert fast == [1, 319, 4559, 1243]

        fast_tokenizer.add_eos_token = True
        fast = fast_tokenizer.encode("A sample test", add_special_tokens=True)
        assert fast == [1, 319, 4559, 1243, 2]

        slow_tokenizer.add_eos_token = True
        slow = slow_tokenizer.encode("A sample test", add_special_tokens=True)
        assert slow == [1, 319, 4559, 1243, 2]

        fast_tokenizer = LlamaTokenizerFast.from_pretrained(
            "hf-internal-testing/llama-tokenizer", add_eos_token=True, add_bos_token=False
        )
        fast = fast_tokenizer.encode("A sample test", add_special_tokens=True)
        assert fast == [319, 4559, 1243, 2]

        slow_tokenzier = LlamaTokenizer.from_pretrained(
            "hf-internal-testing/llama-tokenizer", add_eos_token=True, add_bos_token=False
        )
        slow = slow_tokenzier.encode("A sample test", add_special_tokens=True)
        assert slow == [319, 4559, 1243, 2]

        self.tokenizer.add_eos_token = False
        self.rust_tokenizer.add_eos_token = False

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
    @slow
    def test_conversion(self):
        # This is excruciatingly slow since it has to recreate the entire merge
        # list from the original vocabulary in spm
        self.rust_tokenizer.save_pretrained("./out")
        with tempfile.TemporaryDirectory() as dirname:
            self.rust_tokenizer.save_pretrained(dirname)

            with open(os.path.join(dirname, "tokenizer.json"), "r") as f:
                old_serialized = f.read()

        new_tokenizer = convert_slow_tokenizer(self.tokenizer)
        with tempfile.NamedTemporaryFile() as f:
            new_tokenizer.save(f.name)
            # Re-opening since `f` is in bytes.
            new_serialized = open(f.name, "r").read()
            with open("out_tokenizer.json", "w") as g:
                g.write(new_serialized)

            self.assertEqual(old_serialized, new_serialized)

Arthur's avatar
Arthur committed
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
    def test_simple_encode_decode(self):
        pyth_tokenizer = self.tokenizer
        rust_tokenizer = self.rust_tokenizer

        self.assertEqual(pyth_tokenizer.encode("This is a test"), [1, 910, 338, 263, 1243])
        self.assertEqual(rust_tokenizer.encode("This is a test"), [1, 910, 338, 263, 1243])
        self.assertEqual(pyth_tokenizer.decode([1, 910, 338, 263, 1243], skip_special_tokens=True), "This is a test")
        self.assertEqual(rust_tokenizer.decode([1, 910, 338, 263, 1243], skip_special_tokens=True), "This is a test")

        # bytefallback showcase
        self.assertEqual(pyth_tokenizer.encode("生活的真谛是"), [1, 29871, 30486, 31704, 30210, 30848, 235, 179, 158, 30392])
        self.assertEqual(rust_tokenizer.encode("生活的真谛是"), [1, 29871, 30486, 31704, 30210, 30848, 235, 179, 158, 30392])
        self.assertEqual(
            pyth_tokenizer.decode(
                [1, 29871, 30486, 31704, 30210, 30848, 235, 179, 158, 30392], skip_special_tokens=True
            ),
            "生活的真谛是",
        )
        self.assertEqual(
            rust_tokenizer.decode(
                [1, 29871, 30486, 31704, 30210, 30848, 235, 179, 158, 30392], skip_special_tokens=True
            ),
            "生活的真谛是",
        )

        # Inner spaces showcase
        self.assertEqual(pyth_tokenizer.encode("Hi  Hello"), [1, 6324, 29871, 15043])
        self.assertEqual(rust_tokenizer.encode("Hi  Hello"), [1, 6324, 29871, 15043])
        self.assertEqual(pyth_tokenizer.decode([1, 6324, 29871, 15043], skip_special_tokens=True), "Hi  Hello")
        self.assertEqual(rust_tokenizer.decode([1, 6324, 29871, 15043], skip_special_tokens=True), "Hi  Hello")

        self.assertEqual(pyth_tokenizer.encode("Hi   Hello"), [1, 6324, 259, 15043])
        self.assertEqual(rust_tokenizer.encode("Hi   Hello"), [1, 6324, 259, 15043])
        self.assertEqual(pyth_tokenizer.decode([1, 6324, 259, 15043], skip_special_tokens=True), "Hi   Hello")
        self.assertEqual(rust_tokenizer.decode([1, 6324, 259, 15043], skip_special_tokens=True), "Hi   Hello")

        self.assertEqual(pyth_tokenizer.encode(""), [1])
        self.assertEqual(rust_tokenizer.encode(""), [1])

        self.assertEqual(pyth_tokenizer.encode(" "), [1, 259])
        self.assertEqual(rust_tokenizer.encode(" "), [1, 259])

        self.assertEqual(pyth_tokenizer.encode("  "), [1, 1678])
        self.assertEqual(rust_tokenizer.encode("  "), [1, 1678])

        self.assertEqual(pyth_tokenizer.encode(" Hello"), [1, 29871, 15043])
        self.assertEqual(rust_tokenizer.encode(" Hello"), [1, 29871, 15043])

436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
    def test_no_differences_showcase(self):
        pyth_tokenizer = self.tokenizer
        rust_tokenizer = self.rust_tokenizer
        self.assertEqual(pyth_tokenizer.encode(""), [1])
        self.assertEqual(rust_tokenizer.encode(""), [1])

        self.assertEqual(pyth_tokenizer.encode(" "), [1, 259])
        self.assertEqual(rust_tokenizer.encode(" "), [1, 259])

        self.assertEqual(pyth_tokenizer.encode("  "), [1, 1678])
        self.assertEqual(rust_tokenizer.encode("  "), [1, 1678])

        self.assertEqual(pyth_tokenizer.encode(" Hello"), [1, 29871, 15043])
        self.assertEqual(rust_tokenizer.encode(" Hello"), [1, 29871, 15043])

Arthur's avatar
Arthur committed
451
452
453
        self.assertEqual(pyth_tokenizer.encode("<s>"), [1, 1])
        self.assertEqual(rust_tokenizer.encode("<s>"), [1, 1])

454
455
456
    def test_no_differences_decode(self):
        pyth_tokenizer = self.tokenizer
        rust_tokenizer = self.rust_tokenizer
Arthur's avatar
Arthur committed
457
458
459
460
461
462
463

        self.assertEqual(pyth_tokenizer.decode([869]), ".")
        self.assertEqual(rust_tokenizer.decode([869]), ".")

        self.assertEqual(pyth_tokenizer.decode([30112, 869]), "ا .")
        self.assertEqual(rust_tokenizer.decode([30112, 869]), "ا .")

464
465
466
467
468
469
470
471
472
    def test_no_differences_special_tokens(self):
        pyth_tokenizer = self.tokenizer
        rust_tokenizer = self.rust_tokenizer
        self.assertEqual(pyth_tokenizer.encode(""), [1])
        self.assertEqual(rust_tokenizer.encode(""), [1])

        self.assertEqual(pyth_tokenizer.encode("<s>"), [1, 1])
        self.assertEqual(rust_tokenizer.encode("<s>"), [1, 1])

Arthur's avatar
Arthur committed
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
    @unittest.skipIf(
        os.getenv("RUN_TOKENIZER_INTEGRATION", "0") == "0",
        "RUN_TOKENIZER_INTEGRATION=1 to run tokenizer integration tests",
    )
    def test_integration_test_xnli(self):
        import tqdm

        pyth_tokenizer = self.tokenizer
        rust_tokenizer = self.rust_tokenizer

        dataset = load_dataset("code_x_glue_ct_code_to_text", "go")
        for item in tqdm.tqdm(dataset["validation"]):
            string = item["code"]
            encoded1 = pyth_tokenizer.encode(string)
            encoded2 = rust_tokenizer.encode(string)

            self.assertEqual(encoded1, encoded2)

491
492
            decoded1 = pyth_tokenizer.decode(encoded1, skip_special_tokens=True)
            decoded2 = rust_tokenizer.decode(encoded2, skip_special_tokens=True)
Arthur's avatar
Arthur committed
493
494
495
496
497
498
499
500
501
502
503
504

            self.assertEqual(decoded1, decoded2)

        dataset = load_dataset("xnli", "all_languages")

        for item in tqdm.tqdm(dataset["train"]):
            for string in item["premise"].values():
                encoded1 = pyth_tokenizer.encode(string)
                encoded2 = rust_tokenizer.encode(string)

                self.assertEqual(encoded1, encoded2)

505
506
                decoded1 = pyth_tokenizer.decode(encoded1, skip_special_tokens=True)
                decoded2 = rust_tokenizer.decode(encoded2, skip_special_tokens=True)
Arthur's avatar
Arthur committed
507
508

                self.assertEqual(decoded1, decoded2)
509

510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
    def test_special_token_special_word(self):
        # the word inform should be split as ['in', 'form']
        tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", legacy=False)
        tokenizer.add_tokens(["<REPR_END>"], special_tokens=True)
        out1 = tokenizer.decode(
            tokenizer.encode("<REPR_END>inform", add_special_tokens=False), spaces_between_special_tokens=False
        )
        self.assertEqual(out1, "<REPR_END>inform")
        out2 = tokenizer.decode(
            tokenizer.encode("<REPR_END>inform", add_special_tokens=False), spaces_between_special_tokens=True
        )
        self.assertEqual(out2, " <REPR_END> inform")
        input_ids = tokenizer.encode("<REPR_END>inform", add_special_tokens=False)
        self.assertEqual(input_ids, [29871, 32000, 262, 689])  # 29871 is the spiece underline, '▁'

        out2 = tokenizer.decode(
            tokenizer.encode(" <REPR_END> inform", add_special_tokens=False), spaces_between_special_tokens=False
        )
        # TODO @ArthurZ currently we strip left and right, so this will not keep the spaces
        self.assertEqual(out2, "<REPR_END>inform")

        ### Let's make sure decoding does not add extra spaces here and there
        # TODO @ArthurZ this should be affected by the lstrip/rstrip/single word /normalize refactoring
        # Since currently we always strip left and right of the token, results are as such
        input_ids = tokenizer.encode("<s> Hello<s>how", add_special_tokens=False)
        self.assertEqual(input_ids, [1, 15043, 1, 3525])
        tokens = tokenizer.tokenize("<s> Hello<s>how", add_special_tokens=False)
        self.assertEqual(tokens, ["<s>", "▁Hello", "<s>", "how"])
        decoded_tokens = tokenizer.decode(input_ids)
        self.assertEqual(decoded_tokens, "<s> Hello<s>how")

        # Let's make sure that if there are any spaces, we don't remove them!
        input_ids = tokenizer.encode(" <s> Hello<s> how", add_special_tokens=False)
        self.assertEqual(input_ids, [259, 1, 15043, 1, 920])
        tokens = tokenizer.tokenize(" <s> Hello<s> how", add_special_tokens=False)
        self.assertEqual(tokens, ["▁▁", "<s>", "▁Hello", "<s>", "▁how"])
        decoded_tokens = tokenizer.decode(input_ids)
        self.assertEqual(decoded_tokens, " <s> Hello<s> how")

549
550
551
552
553
554
555
556
557
    def test_some_edge_cases(self):
        tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", legacy=False)

        sp_tokens = tokenizer.sp_model.encode("<s>>", out_type=str)
        self.assertEqual(sp_tokens, ["<", "s", ">>"])
        tokens = tokenizer.tokenize("<s>>")
        self.assertNotEqual(sp_tokens, tokens)
        self.assertEqual(tokens, ["<s>", ">"])

558
559
560
561
562
563
564
565
566
567
568
569
570

@require_sentencepiece
@require_tokenizers
class CommonSpmIntegrationTests(unittest.TestCase):
    """
    A class that regroups important test to make sure that we properly handle the special tokens.
    """

    @classmethod
    def setUpClass(cls):
        tokenizer = LlamaTokenizer(SAMPLE_VOCAB, extra_ids=0, add_bos_token=False, legacy=False)
        tokenizer.add_special_tokens({"additional_special_tokens": ["<s>"]})
        tokenizer._create_trie(tokenizer.all_special_tokens)
571
        # TODO @ArthurZ the above is necessary as addedTokens / intialization sucks. Trie is not correctly created
572
573
574
575
576
577
578
579
580
581
        # So the extra ids are split....
        cls.tokenizer = tokenizer
        return cls

    def test_add_dummy_prefix(self):
        # make sure `'▁'` is prepended, and outputs match sp_model's
        # `sentencepiece.NormalizerSpec.add_dummy_prefix` attribute
        input_ids = self.tokenizer.encode(". Hello")
        self.assertEqual(input_ids, [7, 4, 156, 86, 20])
        sp_encode = self.tokenizer.sp_model.encode(". Hello")
582
        self.assertEqual(input_ids, [7] + sp_encode)
583
584
585
586
587
588
589
590
591
592
        tokens = self.tokenizer.tokenize(". Hello")
        self.assertEqual(tokens, ["▁", ".", "▁He", "ll", "o"])

    def test_remove_extra_whitespaces(self):
        # make sure the extra spaces are eaten. Since the sample vocab does not have
        # `______`. sentencepiece.NormalizerSpec.remove_extra_whitespaces attribute is set to False

        input_ids = self.tokenizer.encode("       . Hello")
        self.assertEqual(input_ids, [7, 4, 156, 86, 20])
        sp_encode = self.tokenizer.sp_model.encode("       . Hello")
593
        self.assertEqual(input_ids, [7] + sp_encode)
594
595
596
597
598
599
600
        tokens = self.tokenizer.tokenize(" . Hello")
        self.assertEqual(tokens, ["▁", ".", "▁He", "ll", "o"])

        # `'▁'` is also a whitespace
        input_ids = self.tokenizer.encode("▁He is not")
        self.assertEqual(input_ids, [156, 46, 44])
        tokens = self.tokenizer.tokenize("▁He is not")
601
602
603
604
605
        sp_encode = [
            self.tokenizer.sp_model.piece_to_id("▁He"),
            self.tokenizer.sp_model.piece_to_id("▁is"),
            self.tokenizer.sp_model.piece_to_id("▁not"),
        ]
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
        self.assertEqual(input_ids, sp_encode)
        self.assertEqual(tokens, ["▁He", "▁is", "▁not"])  # no extra space added

        input_ids = self.tokenizer.encode("▁He is not<s>             ▁He")
        self.assertEqual(input_ids, [156, 46, 44, 1, 156])
        tokens = self.tokenizer.tokenize("▁He is not<s>              ▁He")
        self.assertEqual(tokens, ["▁He", "▁is", "▁not", "<s>", "▁He"])  # spaces are eaten by spm + our strip
        # make sure that the output after the extra id is the same as if
        # extra_id was not there
        input_ids = self.tokenizer.encode("▁He is not             ▁He")
        self.assertEqual(input_ids, [156, 46, 44, 156])
        tokens = self.tokenizer.tokenize("▁He is not              ▁He")
        self.assertEqual(tokens, ["▁He", "▁is", "▁not", "▁He"])  # spaces are eaten by spm even if not start

    def test_character_after_special_token(self):
        # Make sure that `tokenizer.tokenize` is similar to
        # adding the equivalent special token to the vocab
        input_ids = self.tokenizer.encode("Hey <s>I")
        self.assertEqual(input_ids, [156, 30, 1, 100])
        sp_encode = self.tokenizer.sp_model.encode("Hey .I")
        # the last token should be 100
        self.assertEqual(input_ids[-1], sp_encode[-1])
        tokens = self.tokenizer.tokenize("<s>I")
        self.assertEqual(tokens, ["<s>", "I"])

        input_ids = self.tokenizer.encode("Hello, <s>,")
        self.assertEqual(input_ids, [156, 86, 20, 3, 1, 3])
        tokens = self.tokenizer.tokenize("Hello, <s>,")
        self.assertEqual(tokens, ["▁He", "ll", "o", ",", "<s>", ","])

    def test_special_tokens_strip(self):
        input_ids = self.tokenizer.encode(" <s> ,")
        self.assertEqual(input_ids, [1, 7, 3])
        tokens = self.tokenizer.tokenize(" <s> ,")
        # spaces are eaten by rstrip / lstrip + spm sp_model.encode("  ") = []
        self.assertEqual(tokens, ["<s>", "▁", ","])

        input_ids = self.tokenizer.encode("No <s> ▁He")
        self.assertEqual(input_ids, [284, 1, 156])
        tokens = self.tokenizer.tokenize("No <s> ▁He")
        self.assertEqual(tokens, ["▁No", "<s>", "▁He"])  # spaces are eaten by rstrip / lstrip