run_ner.py 29.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Matt Maybeno's avatar
Matt Maybeno committed
16
""" Fine-tuning the library models for named entity recognition on CoNLL-2003 (Bert or Roberta). """
17
18
19
20
21
22
23
24
25
26


import argparse
import glob
import logging
import os
import random

import numpy as np
import torch
27
from seqeval.metrics import f1_score, precision_score, recall_score
28
29
30
31
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
Aymeric Augustin's avatar
Aymeric Augustin committed
32
33

from transformers import (
34
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
Aymeric Augustin's avatar
Aymeric Augustin committed
35
36
    WEIGHTS_NAME,
    AdamW,
37
38
39
    AutoConfig,
    AutoModelForTokenClassification,
    AutoTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
40
41
    get_linear_schedule_with_warmup,
)
42
43
44
from utils_ner import convert_examples_to_features, get_labels, read_examples_from_file


Aymeric Augustin's avatar
Aymeric Augustin committed
45
46
47
48
49
50
try:
    from torch.utils.tensorboard import SummaryWriter
except ImportError:
    from tensorboardX import SummaryWriter


51
52
logger = logging.getLogger(__name__)

53
54
MODEL_CONFIG_CLASSES = list(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
55

56
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in MODEL_CONFIG_CLASSES), ())
57

58
59
TOKENIZER_ARGS = ["do_lower_case", "strip_accents", "keep_accents", "use_fast"]

60
61
62
63
64
65
66
67
68

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


69
def train(args, train_dataset, model, tokenizer, labels, pad_token_label_id):
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
87
88
89
90
91
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
92
93
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
94
95
96
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
97
98

    # Check if saved optimizer or scheduler states exist
99
100
101
    if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
        os.path.join(args.model_name_or_path, "scheduler.pt")
    ):
102
        # Load in optimizer and scheduler states
103
104
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
105

106
107
108
109
110
111
112
113
114
115
116
117
118
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
119
120
121
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
122
123
124
125
126
127

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
128
129
130
131
132
133
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
134
135
136
137
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
138
139
140
141
142
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
        # set global_step to gobal_step of last saved checkpoint from model path
143
144
145
146
        try:
            global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
        except ValueError:
            global_step = 0
147
148
149
150
151
152
153
154
        epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

        logger.info("  Continuing training from checkpoint, will skip to saved global_step")
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)

155
156
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
157
158
159
    train_iterator = trange(
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
    )
160
    set_seed(args)  # Added here for reproductibility
161
162
163
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
164
165
166
167
168
169

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

170
171
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
172
            inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
173
            if args.model_type != "distilbert":
174
175
176
                inputs["token_type_ids"] = (
                    batch[2] if args.model_type in ["bert", "xlnet"] else None
                )  # XLM and RoBERTa don"t use segment_ids
177

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
            outputs = model(**inputs)
            loss = outputs[0]  # model outputs are always tuple in pytorch-transformers (see doc)

            if args.n_gpu > 1:
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
194
195
196
197
198
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

199
                optimizer.step()
Elijah Rippeth's avatar
Elijah Rippeth committed
200
                scheduler.step()  # Update learning rate schedule
201
202
203
204
205
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
206
207
208
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
209
                        results, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev")
210
211
212
213
214
215
216
217
218
219
220
                        for key, value in results.items():
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
221
222
223
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
224
                    model_to_save.save_pretrained(output_dir)
225
226
                    tokenizer.save_pretrained(output_dir)

227
228
229
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
                    logger.info("Saving model checkpoint to %s", output_dir)

230
231
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
232
233
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)

234
235
236
237
238
239
240
241
242
243
244
245
246
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step


247
248
def evaluate(args, model, tokenizer, labels, pad_token_label_id, mode, prefix=""):
    eval_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode=mode)
249
250
251
252
253
254

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
    eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

ronakice's avatar
ronakice committed
255
256
257
258
    # multi-gpu evaluate
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

259
260
261
262
263
264
265
266
267
268
269
270
271
    # Eval!
    logger.info("***** Running evaluation %s *****", prefix)
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
    preds = None
    out_label_ids = None
    model.eval()
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        batch = tuple(t.to(args.device) for t in batch)

        with torch.no_grad():
272
            inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
273
            if args.model_type != "distilbert":
274
275
276
                inputs["token_type_ids"] = (
                    batch[2] if args.model_type in ["bert", "xlnet"] else None
                )  # XLM and RoBERTa don"t use segment_ids
277
278
279
            outputs = model(**inputs)
            tmp_eval_loss, logits = outputs[:2]

280
281
282
            if args.n_gpu > 1:
                tmp_eval_loss = tmp_eval_loss.mean()  # mean() to average on multi-gpu parallel evaluating

283
284
285
286
287
288
289
290
291
292
293
294
            eval_loss += tmp_eval_loss.item()
        nb_eval_steps += 1
        if preds is None:
            preds = logits.detach().cpu().numpy()
            out_label_ids = inputs["labels"].detach().cpu().numpy()
        else:
            preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
            out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)

    eval_loss = eval_loss / nb_eval_steps
    preds = np.argmax(preds, axis=2)

295
    label_map = {i: label for i, label in enumerate(labels)}
296
297
298
299
300
301
302
303
304
305
306
307
308
309

    out_label_list = [[] for _ in range(out_label_ids.shape[0])]
    preds_list = [[] for _ in range(out_label_ids.shape[0])]

    for i in range(out_label_ids.shape[0]):
        for j in range(out_label_ids.shape[1]):
            if out_label_ids[i, j] != pad_token_label_id:
                out_label_list[i].append(label_map[out_label_ids[i][j]])
                preds_list[i].append(label_map[preds[i][j]])

    results = {
        "loss": eval_loss,
        "precision": precision_score(out_label_list, preds_list),
        "recall": recall_score(out_label_list, preds_list),
310
        "f1": f1_score(out_label_list, preds_list),
311
312
313
314
315
316
    }

    logger.info("***** Eval results %s *****", prefix)
    for key in sorted(results.keys()):
        logger.info("  %s = %s", key, str(results[key]))

317
    return results, preds_list
318
319


320
def load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode):
321
322
323
324
    if args.local_rank not in [-1, 0] and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Load data features from cache or dataset file
325
326
327
328
329
330
    cached_features_file = os.path.join(
        args.data_dir,
        "cached_{}_{}_{}".format(
            mode, list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length)
        ),
    )
331
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
332
333
334
335
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset file at %s", args.data_dir)
336
        examples = read_examples_from_file(args.data_dir, mode)
337
338
339
340
341
342
343
344
345
346
347
348
349
350
        features = convert_examples_to_features(
            examples,
            labels,
            args.max_seq_length,
            tokenizer,
            cls_token_at_end=bool(args.model_type in ["xlnet"]),
            # xlnet has a cls token at the end
            cls_token=tokenizer.cls_token,
            cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0,
            sep_token=tokenizer.sep_token,
            sep_token_extra=bool(args.model_type in ["roberta"]),
            # roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805
            pad_on_left=bool(args.model_type in ["xlnet"]),
            # pad on the left for xlnet
351
352
            pad_token=tokenizer.pad_token_id,
            pad_token_segment_id=tokenizer.pad_token_type_id,
353
354
            pad_token_label_id=pad_token_label_id,
        )
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

    if args.local_rank == 0 and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
    all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long)

    dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
    return dataset


def main():
    parser = argparse.ArgumentParser()

375
    # Required parameters
376
377
378
379
380
381
382
383
384
385
386
387
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.",
    )
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
388
        help="Model type selected in the list: " + ", ".join(MODEL_TYPES),
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
404

405
    # Other parameters
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
    parser.add_argument(
        "--labels",
        default="",
        type=str,
        help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.",
    )
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help="The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.")
    parser.add_argument(
        "--evaluate_during_training",
        action="store_true",
        help="Whether to run evaluation during training at each logging step.",
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
    )
445
446
447
448
449
450
    parser.add_argument(
        "--keep_accents", action="store_const", const=True, help="Set this flag if model is trained with accents."
    )
    parser.add_argument(
        "--strip_accents", action="store_const", const=True, help="Set this flag if model is trained without accents."
    )
451
    parser.add_argument("--use_fast", action="store_const", const=True, help="Set this flag to use fast tokenization.")
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

477
478
    parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
506
507
508
509
    parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
    args = parser.parse_args()

510
511
512
513
514
515
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
516
517
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
518
519
520
                args.output_dir
            )
        )
521
522
523
524
525

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
526

527
528
529
530
531
532
533
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
534
        args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
535
536
537
538
539
540
541
542
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend="nccl")
        args.n_gpu = 1
    args.device = device

    # Setup logging
543
544
545
546
547
548
549
550
551
552
553
554
555
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
556
557
558
559
560

    # Set seed
    set_seed(args)

    # Prepare CONLL-2003 task
561
562
    labels = get_labels(args.labels)
    num_labels = len(labels)
563
564
565
566
567
568
569
570
    # Use cross entropy ignore index as padding label id so that only real label ids contribute to the loss later
    pad_token_label_id = CrossEntropyLoss().ignore_index

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
571
    config = AutoConfig.from_pretrained(
572
573
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
574
575
        id2label={str(i): label for i, label in enumerate(labels)},
        label2id={label: i for i, label in enumerate(labels)},
576
577
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
578
    tokenizer_args = {k: v for k, v in vars(args).items() if v is not None and k in TOKENIZER_ARGS}
579
    logger.info("Tokenizer arguments: %s", tokenizer_args)
580
    tokenizer = AutoTokenizer.from_pretrained(
581
582
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        cache_dir=args.cache_dir if args.cache_dir else None,
Martin Malmsten's avatar
Added ,  
Martin Malmsten committed
583
        **tokenizer_args,
584
    )
585
    model = AutoModelForTokenClassification.from_pretrained(
586
587
588
589
590
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
591
592
593
594
595
596
597
598
599
600

    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
601
        train_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode="train")
602
        global_step, tr_loss = train(args, train_dataset, model, tokenizer, labels, pad_token_label_id)
603
604
605
606
607
608
609
610
611
612
613
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
614
615
616
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
617
618
619
620
621
622
623
624
625
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))

    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
626
        tokenizer = AutoTokenizer.from_pretrained(args.output_dir, **tokenizer_args)
627
628
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
629
630
631
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
632
633
634
635
            logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
636
            model = AutoModelForTokenClassification.from_pretrained(checkpoint)
637
            model.to(args.device)
638
            result, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev", prefix=global_step)
639
640
641
642
643
644
645
646
            if global_step:
                result = {"{}_{}".format(global_step, k): v for k, v in result.items()}
            results.update(result)
        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key in sorted(results.keys()):
                writer.write("{} = {}\n".format(key, str(results[key])))

647
    if args.do_predict and args.local_rank in [-1, 0]:
648
649
        tokenizer = AutoTokenizer.from_pretrained(args.output_dir, **tokenizer_args)
        model = AutoModelForTokenClassification.from_pretrained(args.output_dir)
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
        model.to(args.device)
        result, predictions = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="test")
        # Save results
        output_test_results_file = os.path.join(args.output_dir, "test_results.txt")
        with open(output_test_results_file, "w") as writer:
            for key in sorted(result.keys()):
                writer.write("{} = {}\n".format(key, str(result[key])))
        # Save predictions
        output_test_predictions_file = os.path.join(args.output_dir, "test_predictions.txt")
        with open(output_test_predictions_file, "w") as writer:
            with open(os.path.join(args.data_dir, "test.txt"), "r") as f:
                example_id = 0
                for line in f:
                    if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                        writer.write(line)
                        if not predictions[example_id]:
                            example_id += 1
                    elif predictions[example_id]:
                        output_line = line.split()[0] + " " + predictions[example_id].pop(0) + "\n"
                        writer.write(output_line)
                    else:
                        logger.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0])

673
674
675
676
677
    return results


if __name__ == "__main__":
    main()