image_transforms.py 16.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
import warnings
from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union
18
19
20

import numpy as np

21
from transformers.image_utils import PILImageResampling
22
23
24
25
26
27
28
29
from transformers.utils.import_utils import is_flax_available, is_tf_available, is_torch_available, is_vision_available


if is_vision_available():
    import PIL

    from .image_utils import (
        ChannelDimension,
30
        get_channel_dimension_axis,
31
32
33
34
35
        get_image_size,
        infer_channel_dimension_format,
        is_jax_tensor,
        is_tf_tensor,
        is_torch_tensor,
36
        to_numpy_array,
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    )


if TYPE_CHECKING:
    if is_torch_available():
        import torch
    if is_tf_available():
        import tensorflow as tf
    if is_flax_available():
        import jax.numpy as jnp


def to_channel_dimension_format(image: np.ndarray, channel_dim: Union[ChannelDimension, str]) -> np.ndarray:
    """
    Converts `image` to the channel dimension format specified by `channel_dim`.

    Args:
        image (`numpy.ndarray`):
            The image to have its channel dimension set.
        channel_dim (`ChannelDimension`):
            The channel dimension format to use.

    Returns:
        `np.ndarray`: The image with the channel dimension set to `channel_dim`.
    """
    if not isinstance(image, np.ndarray):
        raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}")

    current_channel_dim = infer_channel_dimension_format(image)
    target_channel_dim = ChannelDimension(channel_dim)
    if current_channel_dim == target_channel_dim:
        return image

    if target_channel_dim == ChannelDimension.FIRST:
        image = image.transpose((2, 0, 1))
    elif target_channel_dim == ChannelDimension.LAST:
        image = image.transpose((1, 2, 0))
    else:
        raise ValueError("Unsupported channel dimension format: {}".format(channel_dim))

    return image


def rescale(
    image: np.ndarray, scale: float, data_format: Optional[ChannelDimension] = None, dtype=np.float32
) -> np.ndarray:
    """
    Rescales `image` by `scale`.

    Args:
        image (`np.ndarray`):
            The image to rescale.
        scale (`float`):
            The scale to use for rescaling the image.
        data_format (`ChannelDimension`, *optional*):
            The channel dimension format of the image. If not provided, it will be the same as the input image.
        dtype (`np.dtype`, *optional*, defaults to `np.float32`):
            The dtype of the output image. Defaults to `np.float32`. Used for backwards compatibility with feature
            extractors.

    Returns:
        `np.ndarray`: The rescaled image.
    """
    if not isinstance(image, np.ndarray):
        raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}")

    rescaled_image = image * scale
    if data_format is not None:
        rescaled_image = to_channel_dimension_format(rescaled_image, data_format)
    rescaled_image = rescaled_image.astype(dtype)
    return rescaled_image


def to_pil_image(
    image: Union[np.ndarray, PIL.Image.Image, "torch.Tensor", "tf.Tensor", "jnp.Tensor"],
    do_rescale: Optional[bool] = None,
) -> PIL.Image.Image:
    """
    Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
    needed.

    Args:
        image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor` or `tf.Tensor`):
            The image to convert to the `PIL.Image` format.
        do_rescale (`bool`, *optional*):
            Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will default
            to `True` if the image type is a floating type, `False` otherwise.

    Returns:
        `PIL.Image.Image`: The converted image.
    """
    if isinstance(image, PIL.Image.Image):
        return image

    # Convert all tensors to numpy arrays before converting to PIL image
    if is_torch_tensor(image) or is_tf_tensor(image):
        image = image.numpy()
    elif is_jax_tensor(image):
        image = np.array(image)
    elif not isinstance(image, np.ndarray):
        raise ValueError("Input image type not supported: {}".format(type(image)))

    # If the channel as been moved to first dim, we put it back at the end.
    image = to_channel_dimension_format(image, ChannelDimension.LAST)

    # PIL.Image can only store uint8 values, so we rescale the image to be between 0 and 255 if needed.
    do_rescale = isinstance(image.flat[0], float) if do_rescale is None else do_rescale
    if do_rescale:
        image = rescale(image, 255)
    image = image.astype(np.uint8)
    return PIL.Image.fromarray(image)


def get_resize_output_image_size(
    input_image: np.ndarray,
    size: Union[int, Tuple[int, int], List[int], Tuple[int]],
    default_to_square: bool = True,
    max_size: Optional[int] = None,
) -> tuple:
    """
    Find the target (height, width) dimension of the output image after resizing given the input image and the desired
    size.

    Args:
        input_image (`np.ndarray`):
            The image to resize.
        size (`int` or `Tuple[int, int]` or List[int] or Tuple[int]):
            The size to use for resizing the image. If `size` is a sequence like (h, w), output size will be matched to
            this.

            If `size` is an int and `default_to_square` is `True`, then image will be resized to (size, size). If
            `size` is an int and `default_to_square` is `False`, then smaller edge of the image will be matched to this
            number. i.e, if height > width, then image will be rescaled to (size * height / width, size).
        default_to_square (`bool`, *optional*, defaults to `True`):
            How to convert `size` when it is a single int. If set to `True`, the `size` will be converted to a square
            (`size`,`size`). If set to `False`, will replicate
            [`torchvision.transforms.Resize`](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.Resize)
            with support for resizing only the smallest edge and providing an optional `max_size`.
        max_size (`int`, *optional*):
            The maximum allowed for the longer edge of the resized image: if the longer edge of the image is greater
            than `max_size` after being resized according to `size`, then the image is resized again so that the longer
            edge is equal to `max_size`. As a result, `size` might be overruled, i.e the smaller edge may be shorter
            than `size`. Only used if `default_to_square` is `False`.

    Returns:
        `tuple`: The target (height, width) dimension of the output image after resizing.
    """
    if isinstance(size, (tuple, list)):
        if len(size) == 2:
            return tuple(size)
        elif len(size) == 1:
            # Perform same logic as if size was an int
            size = size[0]
        else:
            raise ValueError("size must have 1 or 2 elements if it is a list or tuple")

    if default_to_square:
        return (size, size)

    height, width = get_image_size(input_image)
    short, long = (width, height) if width <= height else (height, width)
    requested_new_short = size

    if short == requested_new_short:
        return (height, width)

    new_short, new_long = requested_new_short, int(requested_new_short * long / short)

    if max_size is not None:
        if max_size <= requested_new_short:
            raise ValueError(
                f"max_size = {max_size} must be strictly greater than the requested "
                f"size for the smaller edge size = {size}"
            )
        if new_long > max_size:
            new_short, new_long = int(max_size * new_short / new_long), max_size

    return (new_long, new_short) if width <= height else (new_short, new_long)


def resize(
    image,
    size: Tuple[int, int],
220
    resample=PILImageResampling.BILINEAR,
221
222
223
224
225
226
227
228
229
230
231
    data_format: Optional[ChannelDimension] = None,
    return_numpy: bool = True,
) -> np.ndarray:
    """
    Resizes `image` to (h, w) specified by `size` using the PIL library.

    Args:
        image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
            The image to resize.
        size (`Tuple[int, int]`):
            The size to use for resizing the image.
232
        resample (`int`, *optional*, defaults to `PIL.Image.Resampling.BILINEAR`):
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
            The filter to user for resampling.
        data_format (`ChannelDimension`, *optional*):
            The channel dimension format of the output image. If `None`, will use the inferred format from the input.
        return_numpy (`bool`, *optional*, defaults to `True`):
            Whether or not to return the resized image as a numpy array. If False a `PIL.Image.Image` object is
            returned.

    Returns:
        `np.ndarray`: The resized image.
    """
    if not len(size) == 2:
        raise ValueError("size must have 2 elements")

    # For all transformations, we want to keep the same data format as the input image unless otherwise specified.
    # The resized image from PIL will always have channels last, so find the input format first.
    data_format = infer_channel_dimension_format(image) if data_format is None else data_format

    # To maintain backwards compatibility with the resizing done in previous image feature extractors, we use
    # the pillow library to resize the image and then convert back to numpy
    if not isinstance(image, PIL.Image.Image):
        # PIL expects image to have channels last
        image = to_channel_dimension_format(image, ChannelDimension.LAST)
        image = to_pil_image(image)
    height, width = size
    # PIL images are in the format (width, height)
    resized_image = image.resize((width, height), resample=resample)

    if return_numpy:
        resized_image = np.array(resized_image)
        resized_image = to_channel_dimension_format(resized_image, data_format)
    return resized_image
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319


def normalize(
    image: np.ndarray,
    mean: Union[float, Iterable[float]],
    std: Union[float, Iterable[float]],
    data_format: Optional[ChannelDimension] = None,
) -> np.ndarray:
    """
    Normalizes `image` using the mean and standard deviation specified by `mean` and `std`.

    image = (image - mean) / std

    Args:
        image (`np.ndarray`):
            The image to normalize.
        mean (`float` or `Iterable[float]`):
            The mean to use for normalization.
        std (`float` or `Iterable[float]`):
            The standard deviation to use for normalization.
        data_format (`ChannelDimension`, *optional*):
            The channel dimension format of the output image. If `None`, will use the inferred format from the input.
    """
    if isinstance(image, PIL.Image.Image):
        warnings.warn(
            "PIL.Image.Image inputs are deprecated and will be removed in v4.26.0. Please use numpy arrays instead.",
            FutureWarning,
        )
        # Convert PIL image to numpy array with the same logic as in the previous feature extractor normalize -
        # casting to numpy array and dividing by 255.
        image = to_numpy_array(image)
        image = rescale(image, scale=1 / 255)

    input_data_format = infer_channel_dimension_format(image)
    channel_axis = get_channel_dimension_axis(image)
    num_channels = image.shape[channel_axis]

    if isinstance(mean, Iterable):
        if len(mean) != num_channels:
            raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(mean)}")
    else:
        mean = [mean] * num_channels

    if isinstance(std, Iterable):
        if len(std) != num_channels:
            raise ValueError(f"std must have {num_channels} elements if it is an iterable, got {len(std)}")
    else:
        std = [std] * num_channels

    if input_data_format == ChannelDimension.LAST:
        image = (image - mean) / std
    else:
        image = ((image.T - mean) / std).T

    image = to_channel_dimension_format(image, data_format) if data_format is not None else image
    return image
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413


def center_crop(
    image: np.ndarray,
    size: Tuple[int, int],
    data_format: Optional[Union[str, ChannelDimension]] = None,
    return_numpy: Optional[bool] = None,
) -> np.ndarray:
    """
    Crops the `image` to the specified `size` using a center crop. Note that if the image is too small to be cropped to
    the size given, it will be padded (so the returned result will always be of size `size`).

    Args:
        image (`np.ndarray`):
            The image to crop.
        size (`Tuple[int, int]`):
            The target size for the cropped image.
        data_format (`str` or `ChannelDimension`, *optional*):
            The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
            If unset, will use the inferred format of the input image.
        return_numpy (`bool`, *optional*):
            Whether or not to return the cropped image as a numpy array. Used for backwards compatibility with the
            previous ImageFeatureExtractionMixin method.
                - Unset: will return the same type as the input image.
                - `True`: will return a numpy array.
                - `False`: will return a `PIL.Image.Image` object.
    Returns:
        `np.ndarray`: The cropped image.
    """
    if isinstance(image, PIL.Image.Image):
        warnings.warn(
            "PIL.Image.Image inputs are deprecated and will be removed in v4.26.0. Please use numpy arrays instead.",
            FutureWarning,
        )
        image = to_numpy_array(image)
        return_numpy = False if return_numpy is None else return_numpy
    else:
        return_numpy = True if return_numpy is None else return_numpy

    if not isinstance(image, np.ndarray):
        raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}")

    if not isinstance(size, Iterable) or len(size) != 2:
        raise ValueError("size must have 2 elements representing the height and width of the output image")

    input_data_format = infer_channel_dimension_format(image)
    output_data_format = data_format if data_format is not None else input_data_format

    # We perform the crop in (C, H, W) format and then convert to the output format
    image = to_channel_dimension_format(image, ChannelDimension.FIRST)

    orig_height, orig_width = get_image_size(image)
    crop_height, crop_width = size

    # In case size is odd, (image_shape[0] + size[0]) // 2 won't give the proper result.
    top = (orig_height - crop_height) // 2
    bottom = top + crop_height
    # In case size is odd, (image_shape[1] + size[1]) // 2 won't give the proper result.
    left = (orig_width - crop_width) // 2
    right = left + crop_width

    # Check if cropped area is within image boundaries
    if top >= 0 and bottom <= orig_height and left >= 0 and right <= orig_width:
        image = image[..., top:bottom, left:right]
        image = to_channel_dimension_format(image, output_data_format)
        return image

    # Otherwise, we may need to pad if the image is too small. Oh joy...
    new_height = max(crop_height, orig_height)
    new_width = max(crop_width, orig_width)
    new_shape = image.shape[:-2] + (new_height, new_width)
    new_image = np.zeros_like(image, shape=new_shape)

    # If the image is too small, pad it with zeros
    top_pad = (new_height - orig_height) // 2
    bottom_pad = top_pad + orig_height
    left_pad = (new_width - orig_width) // 2
    right_pad = left_pad + orig_width
    new_image[..., top_pad:bottom_pad, left_pad:right_pad] = image

    top += top_pad
    bottom += top_pad
    left += left_pad
    right += left_pad

    new_image = new_image[..., max(0, top) : min(new_height, bottom), max(0, left) : min(new_width, right)]
    new_image = to_channel_dimension_format(new_image, output_data_format)

    if not return_numpy:
        new_image = to_pil_image(new_image)

    return new_image