run_ner.py 10.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Fine-tuning the library models for named entity recognition on CoNLL-2003. """
17
18
19
20


import logging
import os
21
import sys
Julien Chaumond's avatar
Julien Chaumond committed
22
23
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Tuple
24
25

import numpy as np
26
from seqeval.metrics import f1_score, precision_score, recall_score
Julien Chaumond's avatar
Julien Chaumond committed
27
from torch import nn
Aymeric Augustin's avatar
Aymeric Augustin committed
28
29

from transformers import (
30
31
32
    AutoConfig,
    AutoModelForTokenClassification,
    AutoTokenizer,
Julien Chaumond's avatar
Julien Chaumond committed
33
34
35
36
37
    EvalPrediction,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    set_seed,
Aymeric Augustin's avatar
Aymeric Augustin committed
38
)
Julien Chaumond's avatar
Julien Chaumond committed
39
from utils_ner import NerDataset, Split, get_labels
Aymeric Augustin's avatar
Aymeric Augustin committed
40
41


42
43
44
logger = logging.getLogger(__name__)


Julien Chaumond's avatar
Julien Chaumond committed
45
46
47
48
49
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
50

Julien Chaumond's avatar
Julien Chaumond committed
51
52
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
53
    )
Julien Chaumond's avatar
Julien Chaumond committed
54
55
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
56
    )
Julien Chaumond's avatar
Julien Chaumond committed
57
58
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
59
    )
Julien Chaumond's avatar
Julien Chaumond committed
60
61
62
63
64
    use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."})
    # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
    # or just modify its tokenizer_config.json.
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
65
    )
66
67


Julien Chaumond's avatar
Julien Chaumond committed
68
69
70
71
72
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
73

Julien Chaumond's avatar
Julien Chaumond committed
74
75
    data_dir: str = field(
        metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."}
76
    )
Julien Chaumond's avatar
Julien Chaumond committed
77
    labels: Optional[str] = field(
78
79
        default=None,
        metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."},
80
    )
Julien Chaumond's avatar
Julien Chaumond committed
81
    max_seq_length: int = field(
82
        default=128,
Julien Chaumond's avatar
Julien Chaumond committed
83
84
85
86
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
87
    )
Julien Chaumond's avatar
Julien Chaumond committed
88
89
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
90
91
    )

Julien Chaumond's avatar
Julien Chaumond committed
92
93
94
95
96
97
98

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
99
100
101
102
103
104
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
105

106
    if (
Julien Chaumond's avatar
Julien Chaumond committed
107
108
109
110
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
111
    ):
112
        raise ValueError(
Julien Chaumond's avatar
Julien Chaumond committed
113
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
114
        )
115
116

    # Setup logging
117
118
119
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
Julien Chaumond's avatar
Julien Chaumond committed
120
        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
121
122
123
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
Julien Chaumond's avatar
Julien Chaumond committed
124
125
126
127
128
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
129
    )
Julien Chaumond's avatar
Julien Chaumond committed
130
    logger.info("Training/evaluation parameters %s", training_args)
131
132

    # Set seed
Julien Chaumond's avatar
Julien Chaumond committed
133
    set_seed(training_args.seed)
134
135

    # Prepare CONLL-2003 task
Julien Chaumond's avatar
Julien Chaumond committed
136
137
    labels = get_labels(data_args.labels)
    label_map: Dict[int, str] = {i: label for i, label in enumerate(labels)}
138
    num_labels = len(labels)
139
140

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
141
142
143
144
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
145

146
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
147
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
148
        num_labels=num_labels,
Julien Chaumond's avatar
Julien Chaumond committed
149
        id2label=label_map,
150
        label2id={label: i for i, label in enumerate(labels)},
Julien Chaumond's avatar
Julien Chaumond committed
151
        cache_dir=model_args.cache_dir,
152
    )
153
    tokenizer = AutoTokenizer.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
154
155
156
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast,
157
    )
158
    model = AutoModelForTokenClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
159
160
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
161
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
162
        cache_dir=model_args.cache_dir,
163
    )
164

Julien Chaumond's avatar
Julien Chaumond committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    # Get datasets
    train_dataset = (
        NerDataset(
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.train,
        )
        if training_args.do_train
        else None
    )
    eval_dataset = (
        NerDataset(
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.dev,
        )
        if training_args.do_eval
        else None
    )
192

Julien Chaumond's avatar
Julien Chaumond committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]:
        preds = np.argmax(predictions, axis=2)

        batch_size, seq_len = preds.shape

        out_label_list = [[] for _ in range(batch_size)]
        preds_list = [[] for _ in range(batch_size)]

        for i in range(batch_size):
            for j in range(seq_len):
                if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
                    out_label_list[i].append(label_map[label_ids[i][j]])
                    preds_list[i].append(label_map[preds[i][j]])

        return preds_list, out_label_list

    def compute_metrics(p: EvalPrediction) -> Dict:
        preds_list, out_label_list = align_predictions(p.predictions, p.label_ids)
        return {
            "precision": precision_score(out_label_list, preds_list),
            "recall": recall_score(out_label_list, preds_list),
            "f1": f1_score(out_label_list, preds_list),
        }

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        compute_metrics=compute_metrics,
    )
225
226

    # Training
Julien Chaumond's avatar
Julien Chaumond committed
227
228
229
230
    if training_args.do_train:
        trainer.train(
            model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
        )
231
232
233
234
235
        trainer.save_model()
        # For convenience, we also re-save the tokenizer to the same directory,
        # so that you can share your model easily on huggingface.co/models =)
        if trainer.is_world_master():
            tokenizer.save_pretrained(training_args.output_dir)
236
237
238

    # Evaluation
    results = {}
239
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
240
241
242
243
244
        logger.info("*** Evaluate ***")

        result = trainer.evaluate()

        output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")
245
246
247
248
249
250
        if trainer.is_world_master():
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key, value in result.items():
                    logger.info("  %s = %s", key, value)
                    writer.write("%s = %s\n" % (key, value))
Julien Chaumond's avatar
Julien Chaumond committed
251
252
253
254

            results.update(result)

    # Predict
255
    if training_args.do_predict:
Julien Chaumond's avatar
Julien Chaumond committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
        test_dataset = NerDataset(
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.test,
        )

        predictions, label_ids, metrics = trainer.predict(test_dataset)
        preds_list, _ = align_predictions(predictions, label_ids)

        output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt")
270
271
272
273
274
        if trainer.is_world_master():
            with open(output_test_results_file, "w") as writer:
                for key, value in metrics.items():
                    logger.info("  %s = %s", key, value)
                    writer.write("%s = %s\n" % (key, value))
Julien Chaumond's avatar
Julien Chaumond committed
275

276
        # Save predictions
Julien Chaumond's avatar
Julien Chaumond committed
277
        output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt")
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
        if trainer.is_world_master():
            with open(output_test_predictions_file, "w") as writer:
                with open(os.path.join(data_args.data_dir, "test.txt"), "r") as f:
                    example_id = 0
                    for line in f:
                        if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                            writer.write(line)
                            if not preds_list[example_id]:
                                example_id += 1
                        elif preds_list[example_id]:
                            output_line = line.split()[0] + " " + preds_list[example_id].pop(0) + "\n"
                            writer.write(output_line)
                        else:
                            logger.warning(
                                "Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0]
                            )
294

295
296
297
    return results


298
299
300
301
302
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


303
304
if __name__ == "__main__":
    main()