extract_for_distil.py 3.86 KB
Newer Older
VictorSanh's avatar
VictorSanh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
thomwolf's avatar
thomwolf committed
16
Preprocessing script before training DistilBERT.
VictorSanh's avatar
VictorSanh committed
17
"""
18
from transformers import BertForPreTraining
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import torch
import argparse

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description="Extraction some layers of the full BertForPreTraining for Transfer Learned Distillation")
    parser.add_argument("--bert_model", default='bert-base-uncased', type=str)
    parser.add_argument("--dump_checkpoint", default='serialization_dir/transfer_learning_checkpoint_0247911.pth', type=str)
    parser.add_argument("--vocab_transform", action='store_true')
    args = parser.parse_args()


    model = BertForPreTraining.from_pretrained(args.bert_model)

    state_dict = model.state_dict()
    compressed_sd = {}

    for w in ['word_embeddings', 'position_embeddings']:
thomwolf's avatar
thomwolf committed
36
        compressed_sd[f'distilbert.embeddings.{w}.weight'] = \
37
38
            state_dict[f'bert.embeddings.{w}.weight']
    for w in ['weight', 'bias']:
thomwolf's avatar
thomwolf committed
39
        compressed_sd[f'distilbert.embeddings.LayerNorm.{w}'] = \
40
41
42
43
44
            state_dict[f'bert.embeddings.LayerNorm.{w}']

    std_idx = 0
    for teacher_idx in [0, 2, 4, 7, 9, 11]:
        for w in ['weight', 'bias']:
thomwolf's avatar
thomwolf committed
45
            compressed_sd[f'distilbert.transformer.layer.{std_idx}.attention.q_lin.{w}'] = \
46
                state_dict[f'bert.encoder.layer.{teacher_idx}.attention.self.query.{w}']
thomwolf's avatar
thomwolf committed
47
            compressed_sd[f'distilbert.transformer.layer.{std_idx}.attention.k_lin.{w}'] = \
48
                state_dict[f'bert.encoder.layer.{teacher_idx}.attention.self.key.{w}']
thomwolf's avatar
thomwolf committed
49
            compressed_sd[f'distilbert.transformer.layer.{std_idx}.attention.v_lin.{w}'] = \
50
51
                state_dict[f'bert.encoder.layer.{teacher_idx}.attention.self.value.{w}']

thomwolf's avatar
thomwolf committed
52
            compressed_sd[f'distilbert.transformer.layer.{std_idx}.attention.out_lin.{w}'] = \
53
                state_dict[f'bert.encoder.layer.{teacher_idx}.attention.output.dense.{w}']
thomwolf's avatar
thomwolf committed
54
            compressed_sd[f'distilbert.transformer.layer.{std_idx}.sa_layer_norm.{w}'] = \
55
56
                state_dict[f'bert.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}']

thomwolf's avatar
thomwolf committed
57
            compressed_sd[f'distilbert.transformer.layer.{std_idx}.ffn.lin1.{w}'] = \
58
                state_dict[f'bert.encoder.layer.{teacher_idx}.intermediate.dense.{w}']
thomwolf's avatar
thomwolf committed
59
            compressed_sd[f'distilbert.transformer.layer.{std_idx}.ffn.lin2.{w}'] = \
60
                state_dict[f'bert.encoder.layer.{teacher_idx}.output.dense.{w}']
thomwolf's avatar
thomwolf committed
61
            compressed_sd[f'distilbert.transformer.layer.{std_idx}.output_layer_norm.{w}'] = \
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
                state_dict[f'bert.encoder.layer.{teacher_idx}.output.LayerNorm.{w}']
        std_idx += 1

    compressed_sd[f'vocab_projector.weight'] = state_dict[f'cls.predictions.decoder.weight']
    compressed_sd[f'vocab_projector.bias'] = state_dict[f'cls.predictions.bias']
    if args.vocab_transform:
        for w in ['weight', 'bias']:
            compressed_sd[f'vocab_transform.{w}'] = state_dict[f'cls.predictions.transform.dense.{w}']
            compressed_sd[f'vocab_layer_norm.{w}'] = state_dict[f'cls.predictions.transform.LayerNorm.{w}']

    print(f'N layers selected for distillation: {std_idx}')
    print(f'Number of params transfered for distillation: {len(compressed_sd.keys())}')

    print(f'Save transfered checkpoint to {args.dump_checkpoint}.')
    torch.save(compressed_sd, args.dump_checkpoint)