test_modeling_marian.py 32.1 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
""" Testing suite for the PyTorch Marian model. """
16

17
import tempfile
18
19
import unittest

20
from huggingface_hub.hf_api import list_models
21

22
from transformers import MarianConfig, is_torch_available
23
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
24
from transformers.utils import cached_property
25

26
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
27
28
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
29

30
31
32

if is_torch_available():
    import torch
33

34
35
36
37
38
39
40
41
    from transformers import (
        AutoConfig,
        AutoModelWithLMHead,
        AutoTokenizer,
        MarianModel,
        MarianMTModel,
        TranslationPipeline,
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
42
    from transformers.models.marian.convert_marian_to_pytorch import (
43
        ORG_NAME,
44
45
46
        convert_hf_name_to_opus_name,
        convert_opus_name_to_hf_name,
    )
47
48
49
50
51
52
    from transformers.models.marian.modeling_marian import (
        MarianDecoder,
        MarianEncoder,
        MarianForCausalLM,
        shift_tokens_right,
    )
53
54
55
56
57
58
59
60


def prepare_marian_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
61
62
    head_mask=None,
    decoder_head_mask=None,
63
    cross_attn_head_mask=None,
64
65
66
67
68
):
    if attention_mask is None:
        attention_mask = input_ids.ne(config.pad_token_id)
    if decoder_attention_mask is None:
        decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
69
    if head_mask is None:
Patrick von Platen's avatar
Patrick von Platen committed
70
        head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
71
    if decoder_head_mask is None:
Patrick von Platen's avatar
Patrick von Platen committed
72
        decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
73
74
    if cross_attn_head_mask is None:
        cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
75
76
77
78
79
    return {
        "input_ids": input_ids,
        "decoder_input_ids": decoder_input_ids,
        "attention_mask": attention_mask,
        "decoder_attention_mask": attention_mask,
80
81
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
82
        "cross_attn_head_mask": cross_attn_head_mask,
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    }


class MarianModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=4,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
        decoder_start_token_id=3,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id
        self.decoder_start_token_id = decoder_start_token_id

127
128
129
130
131
132
        # forcing a certain token to be generated, sets all other tokens to -inf
        # if however the token to be generated is already at -inf then it can lead token
        # `nan` values and thus break generation
        self.forced_bos_token_id = None
        self.forced_eos_token_id = None

133
134
135
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
            3,
136
        )
137
138
139
140
        input_ids[:, -1] = self.eos_token_id  # Eos Token

        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

141
142
143
144
145
146
        config = self.get_config()
        inputs_dict = prepare_marian_inputs_dict(config, input_ids, decoder_input_ids)
        return config, inputs_dict

    def get_config(self):
        return MarianConfig(
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.decoder_start_token_id,
162
163
            forced_bos_token_id=self.forced_bos_token_id,
            forced_eos_token_id=self.forced_eos_token_id,
164
        )
165
166

    def prepare_config_and_inputs_for_common(self):
167
168
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict
169

170
171
172
173
    def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = MarianModel(config=config).get_decoder().to(torch_device).eval()
        input_ids = inputs_dict["input_ids"]
        attention_mask = inputs_dict["attention_mask"]
174
        head_mask = inputs_dict["head_mask"]
175

176
        # first forward pass
177
        outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

        output, past_key_values = outputs.to_tuple()

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
202
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
203
204
205
206

    def check_encoder_decoder_model_standalone(self, config, inputs_dict):
        model = MarianModel(config=config).to(torch_device).eval()
        outputs = model(**inputs_dict)
207

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        encoder_last_hidden_state = outputs.encoder_last_hidden_state
        last_hidden_state = outputs.last_hidden_state

        with tempfile.TemporaryDirectory() as tmpdirname:
            encoder = model.get_encoder()
            encoder.save_pretrained(tmpdirname)
            encoder = MarianEncoder.from_pretrained(tmpdirname).to(torch_device)

        encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
            0
        ]

        self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)

        with tempfile.TemporaryDirectory() as tmpdirname:
            decoder = model.get_decoder()
            decoder.save_pretrained(tmpdirname)
            decoder = MarianDecoder.from_pretrained(tmpdirname).to(torch_device)

        last_hidden_state_2 = decoder(
            input_ids=inputs_dict["decoder_input_ids"],
            attention_mask=inputs_dict["decoder_attention_mask"],
            encoder_hidden_states=encoder_last_hidden_state,
            encoder_attention_mask=inputs_dict["attention_mask"],
        )[0]

        self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)


@require_torch
class MarianModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
    all_model_classes = (MarianModel, MarianMTModel) if is_torch_available() else ()
    all_generative_model_classes = (MarianMTModel,) if is_torch_available() else ()
    is_encoder_decoder = True
242
    fx_compatible = True
243
244
    test_pruning = False
    test_missing_keys = False
245
246

    def setUp(self):
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
        self.model_tester = MarianModelTester(self)
        self.config_tester = ConfigTester(self, config_class=MarianConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_save_load_strict(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
        for model_class in self.all_model_classes:
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
            self.assertEqual(info["missing_keys"], [])

    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

    def test_encoder_decoder_model_standalone(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)

    def test_generate_fp16(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs()
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        model = MarianMTModel(config).eval().to(torch_device)
        if torch_device == "cuda":
            model.half()
        model.generate(input_ids, attention_mask=attention_mask)
        model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    def test_share_encoder_decoder_embeddings(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs()

        # check if embeddings are shared by default
        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIs(model.get_encoder().embed_tokens, model.get_decoder().embed_tokens)
            self.assertIs(model.get_encoder().embed_tokens.weight, model.get_decoder().embed_tokens.weight)

        # check if embeddings are not shared when config.share_encoder_decoder_embeddings = False
        config.share_encoder_decoder_embeddings = False
        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsNot(model.get_encoder().embed_tokens, model.get_decoder().embed_tokens)
            self.assertIsNot(model.get_encoder().embed_tokens.weight, model.get_decoder().embed_tokens.weight)

        # check if a model with shared embeddings can be saved and loaded with share_encoder_decoder_embeddings = False
        config, _ = self.model_tester.prepare_config_and_inputs()
        for model_class in self.all_model_classes:
            model = model_class(config)
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname, share_encoder_decoder_embeddings=False)
                self.assertIsNot(model.get_encoder().embed_tokens, model.get_decoder().embed_tokens)
                self.assertIsNot(model.get_encoder().embed_tokens.weight, model.get_decoder().embed_tokens.weight)

    def test_resize_decoder_token_embeddings(self):
        config, _ = self.model_tester.prepare_config_and_inputs()

        # check if resize_decoder_token_embeddings raises an error when embeddings are shared
        for model_class in self.all_model_classes:
            model = model_class(config)
            with self.assertRaises(ValueError):
                model.resize_decoder_token_embeddings(config.vocab_size + 1)

        # check if decoder embeddings are resized when config.share_encoder_decoder_embeddings = False
        config.share_encoder_decoder_embeddings = False
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.resize_decoder_token_embeddings(config.vocab_size + 1)
            self.assertEqual(model.get_decoder().embed_tokens.weight.shape, (config.vocab_size + 1, config.d_model))

        # check if lm_head is also resized
        config, _ = self.model_tester.prepare_config_and_inputs()
        config.share_encoder_decoder_embeddings = False
        model = MarianMTModel(config)
        model.resize_decoder_token_embeddings(config.vocab_size + 1)
        self.assertEqual(model.lm_head.weight.shape, (config.vocab_size + 1, config.d_model))

    def test_tie_word_embeddings_decoder(self):
        pass

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

def assert_tensors_close(a, b, atol=1e-12, prefix=""):
    """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
    if a is None and b is None:
        return True
    try:
        if torch.allclose(a, b, atol=atol):
            return True
        raise
    except Exception:
        pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
        if a.numel() > 100:
            msg = f"tensor values are {pct_different:.1%} percent different."
        else:
            msg = f"{a} != {b}"
        if prefix:
            msg = prefix + ": " + msg
        raise AssertionError(msg)


def _long_tensor(tok_lst):
    return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
355
356


357
358
class ModelManagementTests(unittest.TestCase):
    @slow
Lysandre Debut's avatar
Lysandre Debut committed
359
    @require_torch
360
    def test_model_names(self):
361
        model_list = list_models()
362
363
364
365
        model_ids = [x.modelId for x in model_list if x.modelId.startswith(ORG_NAME)]
        bad_model_ids = [mid for mid in model_ids if "+" in model_ids]
        self.assertListEqual([], bad_model_ids)
        self.assertGreater(len(model_ids), 500)
366
367
368


@require_torch
369
370
@require_sentencepiece
@require_tokenizers
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
class MarianIntegrationTest(unittest.TestCase):
    src = "en"
    tgt = "de"
    src_text = [
        "I am a small frog.",
        "Now I can forget the 100 words of german that I know.",
        "Tom asked his teacher for advice.",
        "That's how I would do it.",
        "Tom really admired Mary's courage.",
        "Turn around and close your eyes.",
    ]
    expected_text = [
        "Ich bin ein kleiner Frosch.",
        "Jetzt kann ich die 100 Wörter des Deutschen vergessen, die ich kenne.",
        "Tom bat seinen Lehrer um Rat.",
        "So würde ich das machen.",
        "Tom bewunderte Marias Mut wirklich.",
        "Drehen Sie sich um und schließen Sie die Augen.",
    ]
    # ^^ actual C++ output differs slightly: (1) des Deutschen removed, (2) ""-> "O", (3) tun -> machen

392
393
    @classmethod
    def setUpClass(cls) -> None:
394
        cls.model_name = f"Helsinki-NLP/opus-mt-{cls.src}-{cls.tgt}"
395
396
        return cls

397
    @cached_property
398
    def tokenizer(self):
399
400
401
402
403
404
        return AutoTokenizer.from_pretrained(self.model_name)

    @property
    def eos_token_id(self) -> int:
        return self.tokenizer.eos_token_id

405
406
    @cached_property
    def model(self):
407
408
409
410
411
412
        model: MarianMTModel = AutoModelWithLMHead.from_pretrained(self.model_name).to(torch_device)
        c = model.config
        self.assertListEqual(c.bad_words_ids, [[c.pad_token_id]])
        self.assertEqual(c.max_length, 512)
        self.assertEqual(c.decoder_start_token_id, c.pad_token_id)

413
414
415
416
417
        if torch_device == "cuda":
            return model.half()
        else:
            return model

418
419
420
421
422
    def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
        generated_words = self.translate_src_text(**tokenizer_kwargs)
        self.assertListEqual(self.expected_text, generated_words)

    def translate_src_text(self, **tokenizer_kwargs):
423
424
425
        model_inputs = self.tokenizer(self.src_text, padding=True, return_tensors="pt", **tokenizer_kwargs).to(
            torch_device
        )
426
        self.assertEqual(self.model.device, model_inputs.input_ids.device)
427
        generated_ids = self.model.generate(
428
            model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, max_length=128
429
430
431
432
433
        )
        generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
        return generated_words


434
435
@require_sentencepiece
@require_tokenizers
436
class TestMarian_EN_DE_More(MarianIntegrationTest):
437
438
    @slow
    def test_forward(self):
439
        src, tgt = ["I am a small frog"], ["Ich bin ein kleiner Frosch."]
440
        expected_ids = [38, 121, 14, 697, 38848, 0]
441

442
        model_inputs = self.tokenizer(src, text_target=tgt, return_tensors="pt").to(torch_device)
Sam Shleifer's avatar
Sam Shleifer committed
443

444
        self.assertListEqual(expected_ids, model_inputs.input_ids[0].tolist())
445
446
447
448

        desired_keys = {
            "input_ids",
            "attention_mask",
Sam Shleifer's avatar
Sam Shleifer committed
449
            "labels",
450
451
        }
        self.assertSetEqual(desired_keys, set(model_inputs.keys()))
452
453
454
        model_inputs["decoder_input_ids"] = shift_tokens_right(
            model_inputs.labels, self.tokenizer.pad_token_id, self.model.config.decoder_start_token_id
        )
Sam Shleifer's avatar
Sam Shleifer committed
455
456
        model_inputs["return_dict"] = True
        model_inputs["use_cache"] = False
457
        with torch.no_grad():
Sam Shleifer's avatar
Sam Shleifer committed
458
459
            outputs = self.model(**model_inputs)
        max_indices = outputs.logits.argmax(-1)
460
        self.tokenizer.batch_decode(max_indices)
461

462
463
    def test_unk_support(self):
        t = self.tokenizer
464
        ids = t(["||"], return_tensors="pt").to(torch_device).input_ids[0].tolist()
465
466
467
        expected = [t.unk_token_id, t.unk_token_id, t.eos_token_id]
        self.assertEqual(expected, ids)

468
    def test_pad_not_split(self):
469
        input_ids_w_pad = self.tokenizer(["I am a small frog <pad>"], return_tensors="pt").input_ids[0].tolist()
470
        expected_w_pad = [38, 121, 14, 697, 38848, self.tokenizer.pad_token_id, 0]  # pad
471
        self.assertListEqual(expected_w_pad, input_ids_w_pad)
472
473
474
475
476
477
478
479
480
481

    @slow
    def test_batch_generation_en_de(self):
        self._assert_generated_batch_equal_expected()

    def test_auto_config(self):
        config = AutoConfig.from_pretrained(self.model_name)
        self.assertIsInstance(config, MarianConfig)


482
483
@require_sentencepiece
@require_tokenizers
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
class TestMarian_EN_FR(MarianIntegrationTest):
    src = "en"
    tgt = "fr"
    src_text = [
        "I am a small frog.",
        "Now I can forget the 100 words of german that I know.",
    ]
    expected_text = [
        "Je suis une petite grenouille.",
        "Maintenant, je peux oublier les 100 mots d'allemand que je connais.",
    ]

    @slow
    def test_batch_generation_en_fr(self):
        self._assert_generated_batch_equal_expected()


501
502
@require_sentencepiece
@require_tokenizers
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
class TestMarian_FR_EN(MarianIntegrationTest):
    src = "fr"
    tgt = "en"
    src_text = [
        "Donnez moi le micro.",
        "Tom et Mary étaient assis à une table.",  # Accents
    ]
    expected_text = [
        "Give me the microphone.",
        "Tom and Mary were sitting at a table.",
    ]

    @slow
    def test_batch_generation_fr_en(self):
        self._assert_generated_batch_equal_expected()


520
521
@require_sentencepiece
@require_tokenizers
522
523
524
525
class TestMarian_RU_FR(MarianIntegrationTest):
    src = "ru"
    tgt = "fr"
    src_text = ["Он показал мне рукопись своей новой пьесы."]
526
    expected_text = ["Il m'a montré le manuscrit de sa nouvelle pièce."]
527

528
    @slow
529
530
531
532
    def test_batch_generation_ru_fr(self):
        self._assert_generated_batch_equal_expected()


533
534
@require_sentencepiece
@require_tokenizers
535
class TestMarian_MT_EN(MarianIntegrationTest):
536
537
    """Cover low resource/high perplexity setting. This breaks without adjust_logits_generation overwritten"""

538
539
    src = "mt"
    tgt = "en"
540
541
    src_text = ["Billi messu b'mod ġentili, Ġesù fejjaq raġel li kien milqut bil - marda kerha tal - ġdiem."]
    expected_text = ["Touching gently, Jesus healed a man who was affected by the sad disease of leprosy."]
542

543
    @slow
544
545
546
547
    def test_batch_generation_mt_en(self):
        self._assert_generated_batch_equal_expected()


548
549
@require_sentencepiece
@require_tokenizers
Sam Shleifer's avatar
Sam Shleifer committed
550
551
552
class TestMarian_en_zh(MarianIntegrationTest):
    src = "en"
    tgt = "zh"
553
554
555
556
557
558
559
560
    src_text = ["My name is Wolfgang and I live in Berlin"]
    expected_text = ["我叫沃尔夫冈 我住在柏林"]

    @slow
    def test_batch_generation_eng_zho(self):
        self._assert_generated_batch_equal_expected()


561
562
@require_sentencepiece
@require_tokenizers
563
564
class TestMarian_en_ROMANCE(MarianIntegrationTest):
    """Multilingual on target side."""
565

566
567
568
569
570
571
572
573
574
575
576
577
    src = "en"
    tgt = "ROMANCE"
    src_text = [
        ">>fr<< Don't spend so much time watching TV.",
        ">>pt<< Your message has been sent.",
        ">>es<< He's two years older than me.",
    ]
    expected_text = [
        "Ne passez pas autant de temps à regarder la télé.",
        "A sua mensagem foi enviada.",
        "Es dos años más viejo que yo.",
    ]
578

579
580
    @slow
    def test_batch_generation_en_ROMANCE_multi(self):
581
582
        self._assert_generated_batch_equal_expected()

583
    @slow
584
    def test_pipeline(self):
585
586
        device = 0 if torch_device == "cuda" else -1
        pipeline = TranslationPipeline(self.model, self.tokenizer, framework="pt", device=device)
587
588
589
        output = pipeline(self.src_text)
        self.assertEqual(self.expected_text, [x["translation_text"] for x in output])

590

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
@require_sentencepiece
@require_tokenizers
class TestMarian_FI_EN_V2(MarianIntegrationTest):
    src = "fi"
    tgt = "en"
    src_text = [
        "minä tykkään kirjojen lukemisesta",
        "Pidän jalkapallon katsomisesta",
    ]
    expected_text = ["I like to read books", "I like watching football"]

    @classmethod
    def setUpClass(cls) -> None:
        cls.model_name = "hf-internal-testing/test-opus-tatoeba-fi-en-v2"
        return cls

    @slow
    def test_batch_generation_en_fr(self):
        self._assert_generated_batch_equal_expected()


612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
@require_torch
class TestConversionUtils(unittest.TestCase):
    def test_renaming_multilingual(self):
        old_names = [
            "opus-mt-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
            "opus-mt-cmn+cn-fi",  # no group
            "opus-mt-en-de",  # standard name
            "opus-mt-en-de",  # standard name
        ]
        expected = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"]
        self.assertListEqual(expected, [convert_opus_name_to_hf_name(x) for x in old_names])

    def test_undoing_renaming(self):
        hf_names = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"]
        converted_opus_names = [convert_hf_name_to_opus_name(x) for x in hf_names]
        expected_opus_names = [
            "cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
            "cmn+cn-fi",
            "en-de",  # standard name
            "en-de",
        ]
        self.assertListEqual(expected_opus_names, converted_opus_names)
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851


class MarianStandaloneDecoderModelTester:
    def __init__(
        self,
        parent,
        vocab_size=99,
        batch_size=13,
        d_model=16,
        decoder_seq_length=7,
        is_training=True,
        is_decoder=True,
        use_attention_mask=True,
        use_cache=False,
        use_labels=True,
        decoder_start_token_id=2,
        decoder_ffn_dim=32,
        decoder_layers=4,
        encoder_attention_heads=4,
        decoder_attention_heads=4,
        max_position_embeddings=30,
        is_encoder_decoder=False,
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.decoder_seq_length = decoder_seq_length
        # For common tests
        self.seq_length = self.decoder_seq_length
        self.is_training = is_training
        self.use_attention_mask = use_attention_mask
        self.use_labels = use_labels

        self.vocab_size = vocab_size
        self.d_model = d_model
        self.hidden_size = d_model
        self.num_hidden_layers = decoder_layers
        self.decoder_layers = decoder_layers
        self.decoder_ffn_dim = decoder_ffn_dim
        self.encoder_attention_heads = encoder_attention_heads
        self.decoder_attention_heads = decoder_attention_heads
        self.num_attention_heads = decoder_attention_heads
        self.eos_token_id = eos_token_id
        self.bos_token_id = bos_token_id
        self.pad_token_id = pad_token_id
        self.decoder_start_token_id = decoder_start_token_id
        self.use_cache = use_cache
        self.max_position_embeddings = max_position_embeddings
        self.is_encoder_decoder = is_encoder_decoder

        self.scope = None
        self.decoder_key_length = decoder_seq_length
        self.base_model_out_len = 2
        self.decoder_attention_idx = 1

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

        attention_mask = None
        if self.use_attention_mask:
            attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)

        lm_labels = None
        if self.use_labels:
            lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

        config = MarianConfig(
            vocab_size=self.vocab_size,
            d_model=self.d_model,
            decoder_layers=self.decoder_layers,
            decoder_ffn_dim=self.decoder_ffn_dim,
            encoder_attention_heads=self.encoder_attention_heads,
            decoder_attention_heads=self.decoder_attention_heads,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            use_cache=self.use_cache,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.decoder_start_token_id,
            max_position_embeddings=self.max_position_embeddings,
            is_encoder_decoder=self.is_encoder_decoder,
        )

        return (
            config,
            input_ids,
            attention_mask,
            lm_labels,
        )

    def create_and_check_decoder_model_past(
        self,
        config,
        input_ids,
        attention_mask,
        lm_labels,
    ):
        config.use_cache = True
        model = MarianDecoder(config=config).to(torch_device).eval()
        # first forward pass
        outputs = model(input_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids)
        outputs_no_past = model(input_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

        past_key_values = outputs["past_key_values"]

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)

        output_from_no_past = model(next_input_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)

    def create_and_check_decoder_model_attention_mask_past(
        self,
        config,
        input_ids,
        attention_mask,
        lm_labels,
    ):
        model = MarianDecoder(config=config).to(torch_device).eval()

        # create attention mask
        attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)

        half_seq_length = input_ids.shape[-1] // 2
        attn_mask[:, half_seq_length:] = 0

        # first forward pass
        past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"]

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
        input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens

        # append to next input_ids and attn_mask
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        attn_mask = torch.cat(
            [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
            dim=1,
        )

        # get two different outputs
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=attn_mask, past_key_values=past_key_values)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            attention_mask,
            lm_labels,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
        }
        return config, inputs_dict


@require_torch
class MarianStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
    all_model_classes = (MarianDecoder, MarianForCausalLM) if is_torch_available() else ()
    all_generative_model_classes = (MarianForCausalLM,) if is_torch_available() else ()
    test_pruning = False
    is_encoder_decoder = False

    def setUp(
        self,
    ):
        self.model_tester = MarianStandaloneDecoderModelTester(self, is_training=False)
        self.config_tester = ConfigTester(self, config_class=MarianConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_decoder_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)

    def test_decoder_model_attn_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs)

    def test_retain_grad_hidden_states_attentions(self):
        # decoder cannot keep gradients
        return