test_benchmark_tf.py 7.12 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
import os
import tempfile
import unittest
from pathlib import Path

from transformers import AutoConfig, is_tf_available

from .utils import require_tf


if is_tf_available():
    import tensorflow as tf
13
    from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
Patrick von Platen's avatar
Patrick von Platen committed
14
15
16
17
18
19
20
21
22
23
24
25


@require_tf
class TFBenchmarkTest(unittest.TestCase):
    def check_results_dict_not_empty(self, results):
        for model_result in results.values():
            for batch_size, sequence_length in zip(model_result["bs"], model_result["ss"]):
                result = model_result["result"][batch_size][sequence_length]
                self.assertIsNotNone(result)

    def test_inference_no_configs_eager(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
26
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
27
28
29
30
31
32
33
34
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            eager_mode=True,
            no_multi_process=True,
        )
35
        benchmark = TensorFlowBenchmark(benchmark_args)
Patrick von Platen's avatar
Patrick von Platen committed
36
37
38
39
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

40
41
    def test_inference_no_configs_only_pretrain(self):
        MODEL_ID = "sshleifer/tiny-distilbert-base-uncased-finetuned-sst-2-english"
42
        benchmark_args = TensorFlowBenchmarkArguments(
43
44
45
46
47
48
49
50
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
            only_pretrain_model=True,
        )
51
        benchmark = TensorFlowBenchmark(benchmark_args)
52
53
54
55
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

Patrick von Platen's avatar
Patrick von Platen committed
56
57
    def test_inference_no_configs_graph(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
58
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
59
60
61
62
63
64
65
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
        )
66
        benchmark = TensorFlowBenchmark(benchmark_args)
Patrick von Platen's avatar
Patrick von Platen committed
67
68
69
70
71
72
73
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    def test_inference_with_configs_eager(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        config = AutoConfig.from_pretrained(MODEL_ID)
74
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
75
76
77
78
79
80
81
82
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            eager_mode=True,
            no_multi_process=True,
        )
83
        benchmark = TensorFlowBenchmark(benchmark_args, [config])
Patrick von Platen's avatar
Patrick von Platen committed
84
85
86
87
88
89
90
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    def test_inference_with_configs_graph(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        config = AutoConfig.from_pretrained(MODEL_ID)
91
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
92
93
94
95
96
97
98
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
        )
99
        benchmark = TensorFlowBenchmark(benchmark_args, [config])
Patrick von Platen's avatar
Patrick von Platen committed
100
101
102
103
104
105
106
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    def test_inference_encoder_decoder_with_configs(self):
        MODEL_ID = "patrickvonplaten/t5-tiny-random"
        config = AutoConfig.from_pretrained(MODEL_ID)
107
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
108
109
110
111
112
113
114
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
        )
115
        benchmark = TensorFlowBenchmark(benchmark_args, configs=[config])
Patrick von Platen's avatar
Patrick von Platen committed
116
117
118
119
120
121
122
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU")) == 0, "Cannot do xla on CPU.")
    def test_inference_no_configs_xla(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
123
        benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
124
125
126
127
128
129
130
131
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            use_xla=True,
            no_multi_process=True,
        )
132
        benchmark = TensorFlowBenchmark(benchmark_args)
Patrick von Platen's avatar
Patrick von Platen committed
133
134
135
136
137
138
139
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    def test_save_csv_files(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        with tempfile.TemporaryDirectory() as tmp_dir:
140
            benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
141
142
143
144
145
146
147
148
149
150
                models=[MODEL_ID],
                no_inference=False,
                save_to_csv=True,
                sequence_lengths=[8],
                batch_sizes=[1],
                inference_time_csv_file=os.path.join(tmp_dir, "inf_time.csv"),
                inference_memory_csv_file=os.path.join(tmp_dir, "inf_mem.csv"),
                env_info_csv_file=os.path.join(tmp_dir, "env.csv"),
                no_multi_process=True,
            )
151
            benchmark = TensorFlowBenchmark(benchmark_args)
Patrick von Platen's avatar
Patrick von Platen committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
            benchmark.run()
            self.assertTrue(Path(os.path.join(tmp_dir, "inf_time.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "inf_mem.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "env.csv")).exists())

    def test_trace_memory(self):
        MODEL_ID = "sshleifer/tiny-gpt2"

        def _check_summary_is_not_empty(summary):
            self.assertTrue(hasattr(summary, "sequential"))
            self.assertTrue(hasattr(summary, "cumulative"))
            self.assertTrue(hasattr(summary, "current"))
            self.assertTrue(hasattr(summary, "total"))

        with tempfile.TemporaryDirectory() as tmp_dir:
167
            benchmark_args = TensorFlowBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
168
169
170
171
172
173
174
175
176
177
                models=[MODEL_ID],
                no_inference=False,
                sequence_lengths=[8],
                batch_sizes=[1],
                log_filename=os.path.join(tmp_dir, "log.txt"),
                log_print=True,
                trace_memory_line_by_line=True,
                eager_mode=True,
                no_multi_process=True,
            )
178
            benchmark = TensorFlowBenchmark(benchmark_args)
Patrick von Platen's avatar
Patrick von Platen committed
179
180
181
            result = benchmark.run()
            _check_summary_is_not_empty(result.inference_summary)
            self.assertTrue(Path(os.path.join(tmp_dir, "log.txt")).exists())