configuration_transfo_xl.py 6.66 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Transformer XL configuration """

from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import sys
from io import open

from .configuration_utils import PretrainedConfig

logger = logging.getLogger(__name__)

TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'transfo-xl-wt103': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-config.json",
}

class TransfoXLConfig(PretrainedConfig):
    """Configuration class to store the configuration of a `TransfoXLModel`.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `TransfoXLModel` or a configuration json file.
            cutoffs: cutoffs for the adaptive softmax
            d_model: Dimensionality of the model's hidden states.
            d_embed: Dimensionality of the embeddings
            d_head: Dimensionality of the model's heads.
            div_val: divident value for adapative input and softmax
            pre_lnorm: apply LayerNorm to the input instead of the output
            d_inner: Inner dimension in FF
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            tgt_len: number of tokens to predict
            ext_len: length of the extended context
            mem_len: length of the retained previous heads
            same_length: use the same attn length for all tokens
            proj_share_all_but_first: True to share all but first projs, False not to share.
            attn_type: attention type. 0 for Transformer-XL, 1 for Shaw et al, 2 for Vaswani et al, 3 for Al Rfou et al.
            clamp_len: use the same pos embeddings after clamp_len
            sample_softmax: number of samples in sampled softmax
            adaptive: use adaptive softmax
            tie_weight: tie the word embedding and softmax weights
            dropout: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            dropatt: The dropout ratio for the attention probabilities.
            untie_r: untie relative position biases
            embd_pdrop: The dropout ratio for the embeddings.
            init: parameter initializer to use
            init_range: parameters initialized by U(-init_range, init_range).
            proj_init_std: parameters initialized by N(0, init_std)
            init_std: parameters initialized by N(0, init_std)
    """
    pretrained_config_archive_map = TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP

    def __init__(self,
                 vocab_size_or_config_json_file=267735,
                 cutoffs=[20000, 40000, 200000],
                 d_model=1024,
                 d_embed=1024,
                 n_head=16,
                 d_head=64,
                 d_inner=4096,
                 div_val=4,
                 pre_lnorm=False,
                 n_layer=18,
                 tgt_len=128,
                 ext_len=0,
                 mem_len=1600,
                 clamp_len=1000,
                 same_length=True,
                 proj_share_all_but_first=True,
                 attn_type=0,
                 sample_softmax=-1,
                 adaptive=True,
                 tie_weight=True,
                 dropout=0.1,
                 dropatt=0.0,
                 untie_r=True,
                 init="normal",
                 init_range=0.01,
                 proj_init_std=0.01,
                 init_std=0.02,
98
                 layer_norm_epsilon=1e-5,
99
100
101
102
                 **kwargs):
        """Constructs TransfoXLConfig.
        """
        super(TransfoXLConfig, self).__init__(**kwargs)
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        self.n_token = vocab_size_or_config_json_file if isinstance(vocab_size_or_config_json_file, int) else -1
        self.cutoffs = []
        self.cutoffs.extend(cutoffs)
        self.tie_weight = tie_weight
        if proj_share_all_but_first:
            self.tie_projs = [False] + [True] * len(self.cutoffs)
        else:
            self.tie_projs = [False] + [False] * len(self.cutoffs)
        self.d_model = d_model
        self.d_embed = d_embed
        self.d_head = d_head
        self.d_inner = d_inner
        self.div_val = div_val
        self.pre_lnorm = pre_lnorm
        self.n_layer = n_layer
        self.n_head = n_head
        self.tgt_len = tgt_len
        self.ext_len = ext_len
        self.mem_len = mem_len
        self.same_length = same_length
        self.attn_type = attn_type
        self.clamp_len = clamp_len
        self.sample_softmax = sample_softmax
        self.adaptive = adaptive
        self.dropout = dropout
        self.dropatt = dropatt
        self.untie_r = untie_r
        self.init = init
        self.init_range = init_range
        self.proj_init_std = proj_init_std
        self.init_std = init_std
        self.layer_norm_epsilon = layer_norm_epsilon
135
136
137
138
139
140
141

        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
142
        elif not isinstance(vocab_size_or_config_json_file, int):
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
            raise ValueError("First argument must be either a vocabulary size (int)"
                             " or the path to a pretrained model config file (str)")

    @property
    def max_position_embeddings(self):
        return self.tgt_len + self.ext_len + self.mem_len

    @property
    def vocab_size(self):
        return self.n_token

    @vocab_size.setter
    def vocab_size(self, value):
        self.n_token = value

    @property
    def hidden_size(self):
        return self.d_model

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer