test_tokenization_marian.py 2.63 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# coding=utf-8
# Copyright 2020 Huggingface
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
import unittest
from pathlib import Path
from shutil import copyfile

from transformers.tokenization_marian import MarianTokenizer, save_json, vocab_files_names
from transformers.tokenization_utils import BatchEncoding

from .test_tokenization_common import TokenizerTesterMixin
from .utils import slow


SAMPLE_SP = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")

mock_tokenizer_config = {"target_lang": "fi", "source_lang": "en"}
zh_code = ">>zh<<"
ORG_NAME = "Helsinki-NLP/"


class MarianTokenizationTest(TokenizerTesterMixin, unittest.TestCase):

    tokenizer_class = MarianTokenizer

    def setUp(self):
        super().setUp()
        vocab = ["</s>", "<unk>", "鈻乀his", "鈻乮s", "鈻乤", "鈻乼", "est", "\u0120", "<pad>"]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        save_dir = Path(self.tmpdirname)
        save_json(vocab_tokens, save_dir / vocab_files_names["vocab"])
        save_json(mock_tokenizer_config, save_dir / vocab_files_names["tokenizer_config_file"])
        if not (save_dir / vocab_files_names["source_spm"]).exists():
            copyfile(SAMPLE_SP, save_dir / vocab_files_names["source_spm"])
            copyfile(SAMPLE_SP, save_dir / vocab_files_names["target_spm"])

        tokenizer = MarianTokenizer.from_pretrained(self.tmpdirname)
        tokenizer.save_pretrained(self.tmpdirname)

    def get_tokenizer(self, max_len=None, **kwargs) -> MarianTokenizer:
55
        return MarianTokenizer.from_pretrained(self.tmpdirname, model_max_length=max_len, **kwargs)
56
57
58
59
60
61
62
63
64
65
66
67
68
69

    def get_input_output_texts(self):
        return (
            "This is a test",
            "This is a test",
        )

    @slow
    def test_tokenizer_equivalence_en_de(self):
        en_de_tokenizer = MarianTokenizer.from_pretrained(f"{ORG_NAME}opus-mt-en-de")
        batch = en_de_tokenizer.prepare_translation_batch(["I am a small frog"], return_tensors=None)
        self.assertIsInstance(batch, BatchEncoding)
        expected = [38, 121, 14, 697, 38848, 0]
        self.assertListEqual(expected, batch.input_ids[0])