bert_hubconf.py 10.5 KB
Newer Older
VictorSanh's avatar
VictorSanh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.modeling import (
        BertModel,
        BertForNextSentencePrediction,
        BertForMaskedLM,
        BertForMultipleChoice,
        BertForPreTraining,
        BertForQuestionAnswering,
        BertForSequenceClassification,
        BertForTokenClassification,
        )

dependencies = ['torch', 'tqdm', 'boto3', 'requests', 'regex']

# A lot of models share the same param doc. Use a decorator
# to save typing
bert_docstring = """
    Params:
        pretrained_model_name_or_path: either:
            - a str with the name of a pre-trained model to load
                . `bert-base-uncased`
                . `bert-large-uncased`
                . `bert-base-cased`
                . `bert-large-cased`
                . `bert-base-multilingual-uncased`
                . `bert-base-multilingual-cased`
                . `bert-base-chinese`
            - a path or url to a pretrained model archive containing:
                . `bert_config.json` a configuration file for the model
                . `pytorch_model.bin` a PyTorch dump of a BertForPreTraining
                  instance
            - a path or url to a pretrained model archive containing:
                . `bert_config.json` a configuration file for the model
                . `model.chkpt` a TensorFlow checkpoint
        from_tf: should we load the weights from a locally saved TensorFlow
                 checkpoint
        cache_dir: an optional path to a folder in which the pre-trained models
                   will be cached.
        state_dict: an optional state dictionnary
                    (collections.OrderedDict object) to use instead of Google
                    pre-trained models
        *inputs, **kwargs: additional input for the specific Bert class
            (ex: num_labels for BertForSequenceClassification)
"""


def _append_from_pretrained_docstring(docstr):
    def docstring_decorator(fn):
        fn.__doc__ = fn.__doc__ + docstr
        return fn
    return docstring_decorator


def bertTokenizer(*args, **kwargs):
    """
    Instantiate a BertTokenizer from a pre-trained/customized vocab file
    Args:
    pretrained_model_name_or_path: Path to pretrained model archive
                                   or one of pre-trained vocab configs below.
                                       * bert-base-uncased
                                       * bert-large-uncased
                                       * bert-base-cased
                                       * bert-large-cased
                                       * bert-base-multilingual-uncased
                                       * bert-base-multilingual-cased
                                       * bert-base-chinese
    Keyword args:
    cache_dir: an optional path to a specific directory to download and cache
               the pre-trained model weights.
               Default: None
    do_lower_case: Whether to lower case the input.
                   Only has an effect when do_wordpiece_only=False
                   Default: True
    do_basic_tokenize: Whether to do basic tokenization before wordpiece.
                       Default: True
    max_len: An artificial maximum length to truncate tokenized sequences to;
             Effective maximum length is always the minimum of this
             value (if specified) and the underlying BERT model's
             sequence length.
             Default: None
    never_split: List of tokens which will never be split during tokenization.
                 Only has an effect when do_wordpiece_only=False
                 Default: ["[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]"]

    Example:
        >>> sentence = 'Hello, World!'
        >>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False, force_reload=False)
        >>> toks = tokenizer.tokenize(sentence)
        ['Hello', '##,', 'World', '##!']
        >>> ids = tokenizer.convert_tokens_to_ids(toks)
        [8667, 28136, 1291, 28125]
    """
    tokenizer = BertTokenizer.from_pretrained(*args, **kwargs)
    return tokenizer


@_append_from_pretrained_docstring(bert_docstring)
def bertModel(*args, **kwargs):
    """
    BertModel is the basic BERT Transformer model with a layer of summed token,
    position and sequence embeddings followed by a series of identical
    self-attention blocks (12 for BERT-base, 24 for BERT-large).

    Example:
        # Load the tokenizer
        >>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False, force_reload=False)
        #  Prepare tokenized input
        >>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
        >>> tokenized_text = tokenizer.tokenize(text)
        ['[CLS]', 'Who', 'was', 'Jim', 'He', '##nson', '?', '[SEP]', 'Jim', 'He', '##nson', 'was', 'a', 'puppet', '##eer', '[SEP]']
        >>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
        >>> segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
        >>> tokens_tensor = torch.tensor([indexed_tokens])
        tensor([[101,  2627,  1108,  3104,  1124, 15703, 136, 102, 3104, 1124, 15703, 1108, 170, 16797, 8284, 102]])
        >>> segments_tensors = torch.tensor([segments_ids])
        tensor([[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]])
        # Load bertModel
        >>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertModel', 'bert-base-cased', force_reload=False)
        >>> model.eval()
        # Predict hidden states features for each layer
        >>> with torch.no_grad():
                encoded_layers, _ = model(tokens_tensor, segments_tensors)
    """
    model = BertModel.from_pretrained(*args, **kwargs)
    return model


@_append_from_pretrained_docstring(bert_docstring)
def bertForNextSentencePrediction(*args, **kwargs):
    """
    BERT model with next sentence prediction head.
    This module comprises the BERT model followed by the next sentence
    classification head.
    """
    model = BertForNextSentencePrediction.from_pretrained(*args, **kwargs)
    return model


@_append_from_pretrained_docstring(bert_docstring)
def bertForPreTraining(*args, **kwargs):
    """
    BERT model with pre-training heads.
    This module comprises the BERT model followed by the two pre-training heads
        - the masked language modeling head, and
        - the next sentence classification head.
    """
    model = BertForPreTraining.from_pretrained(*args, **kwargs)
    return model


@_append_from_pretrained_docstring(bert_docstring)
def bertForMaskedLM(*args, **kwargs):
    """
    BertForMaskedLM includes the BertModel Transformer followed by the
    (possibly) pre-trained masked language modeling head.

    Example:
        # Load the tokenizer
        >>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False, force_reload=False)
        #  Prepare tokenized input
        >>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
        >>> tokenized_text = tokenizer.tokenize(text)
        >>> masked_index = 8
        >>> tokenized_text[masked_index] = '[MASK]'
        ['[CLS]', 'who', 'was', 'jim', 'henson', '?', '[SEP]', 'jim', '[MASK]', 'was', 'a', 'puppet', '##eer', '[SEP]']
        >>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
        >>> segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
        >>> tokens_tensor = torch.tensor([indexed_tokens])
        >>> segments_tensors = torch.tensor([segments_ids])
        # Load bertForMaskedLM
        >>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForMaskedLM', 'bert-base-cased', force_reload=False)
        >>> model.eval()
        # Predict all tokens
        >>> with torch.no_grad():
                predictions = model(tokens_tensor, segments_tensors)
        >>> predicted_index = torch.argmax(predictions[0, masked_index]).item()
        >>> predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
        'henson'
    """
    model = BertForMaskedLM.from_pretrained(*args, **kwargs)
    return model


@_append_from_pretrained_docstring(bert_docstring)
def bertForSequenceClassification(*args, **kwargs):
    """
    BertForSequenceClassification is a fine-tuning model that includes
    BertModel and a sequence-level (sequence or pair of sequences) classifier
    on top of the BertModel.

    The sequence-level classifier is a linear layer that takes as input the
    last hidden state of the first character in the input sequence
    (see Figures 3a and 3b in the BERT paper).

    Args:
    num_labels: the number (>=2) of classes for the classifier.

    Example:
        >>> torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForSequenceClassification', 'bert-base-cased', num_labels=2, force_reload=True)
    """
    model = BertForSequenceClassification.from_pretrained(*args, **kwargs)
    return model


@_append_from_pretrained_docstring(bert_docstring)
def bertForMultipleChoice(*args, **kwargs):
    """
    BertForMultipleChoice is a fine-tuning model that includes BertModel and a
    linear layer on top of the BertModel.

    Args:
    num_choices: the number (>=2) of classes for the classifier.

    Example:
        >>> torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForMultipleChoice', 'bert-base-cased', num_choices=2, force_reload=True)
    """
    model = BertForMultipleChoice.from_pretrained(*args, **kwargs)
    return model


@_append_from_pretrained_docstring(bert_docstring)
def bertForQuestionAnswering(*args, **kwargs):
    """
    BertForQuestionAnswering is a fine-tuning model that includes BertModel
    with a token-level classifiers on top of the full sequence of last hidden
    states.
    """
    model = BertForQuestionAnswering.from_pretrained(*args, **kwargs)
    return model


@_append_from_pretrained_docstring(bert_docstring)
def bertForTokenClassification(*args, **kwargs):
    """
    BertForTokenClassification is a fine-tuning model that includes BertModel
    and a token-level classifier on top of the BertModel.

    The token-level classifier is a linear layer that takes as input the last
    hidden state of the sequence.

    Args:
    num_labels: the number (>=2) of classes for the classifier.

    Example:
        >>> torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForTokenClassification', 'bert-base-cased', num_labels=2, force_reload=True)
    """
    model = BertForTokenClassification.from_pretrained(*args, **kwargs)
    return model