test_tokenization_wav2vec2.py 14.4 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for the Wav2Vec2 tokenizer."""
import inspect
import json
import os
import random
import shutil
import tempfile
import unittest

import numpy as np

26
27
28
29
from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.wav2vec2 import Wav2Vec2Config, Wav2Vec2Tokenizer
from transformers.models.wav2vec2.tokenization_wav2vec2 import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
Patrick von Platen's avatar
Patrick von Platen committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304


global_rng = random.Random()


def floats_list(shape, scale=1.0, rng=None, name=None):
    """Creates a random float32 tensor"""
    if rng is None:
        rng = global_rng

    values = []
    for batch_idx in range(shape[0]):
        values.append([])
        for _ in range(shape[1]):
            values[-1].append(rng.random() * scale)

    return values


class Wav2Vec2TokenizerTest(unittest.TestCase):
    tokenizer_class = Wav2Vec2Tokenizer

    def setUp(self):
        super().setUp()

        vocab = "<pad> <s> </s> <unk> | E T A O N I H S R D L U M W C F G Y P B V K ' X J Q Z".split(" ")
        vocab_tokens = dict(zip(vocab, range(len(vocab))))

        self.special_tokens_map = {"pad_token": "<pad>", "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"}

        self.tmpdirname = tempfile.mkdtemp()
        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(vocab_tokens) + "\n")

    def get_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
        return Wav2Vec2Tokenizer.from_pretrained(self.tmpdirname, **kwargs)

    def test_tokenizer_decode(self):
        # TODO(PVP) - change to facebook
        tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h")

        sample_ids = [
            [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98],
            [24, 22, 5, tokenizer.word_delimiter_token_id, 24, 22, 5, 77],
        ]
        tokens = tokenizer.decode(sample_ids[0])
        batch_tokens = tokenizer.batch_decode(sample_ids)
        self.assertEqual(tokens, batch_tokens[0])
        self.assertEqual(batch_tokens, ["HELLO<unk>", "BYE BYE<unk>"])

    def test_tokenizer_decode_special(self):
        # TODO(PVP) - change to facebook
        tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h")

        sample_ids = [
            [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98],
            [24, 22, 5, tokenizer.word_delimiter_token_id, 24, 22, 5, 77],
        ]
        sample_ids_2 = [
            [11, 5, 5, 5, 5, 5, 15, 15, 15, tokenizer.pad_token_id, 15, 8, 98],
            [
                24,
                22,
                5,
                tokenizer.pad_token_id,
                tokenizer.pad_token_id,
                tokenizer.pad_token_id,
                tokenizer.word_delimiter_token_id,
                24,
                22,
                5,
                77,
                tokenizer.word_delimiter_token_id,
            ],
        ]

        batch_tokens = tokenizer.batch_decode(sample_ids)
        batch_tokens_2 = tokenizer.batch_decode(sample_ids_2)
        self.assertEqual(batch_tokens, batch_tokens_2)
        self.assertEqual(batch_tokens, ["HELLO<unk>", "BYE BYE<unk>"])

    def test_tokenizer_decode_added_tokens(self):
        tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h")
        tokenizer.add_tokens(["!", "?"])
        tokenizer.add_special_tokens({"cls_token": "$$$"})

        sample_ids = [
            [
                11,
                5,
                15,
                tokenizer.pad_token_id,
                15,
                8,
                98,
                32,
                32,
                33,
                tokenizer.word_delimiter_token_id,
                32,
                32,
                33,
                34,
                34,
            ],
            [24, 22, 5, tokenizer.word_delimiter_token_id, 24, 22, 5, 77, tokenizer.pad_token_id, 34, 34],
        ]
        batch_tokens = tokenizer.batch_decode(sample_ids)

        self.assertEqual(batch_tokens, ["HELLO<unk>!?!?$$$", "BYE BYE<unk>$$$"])

    def test_call(self):
        # Tests that all call wrap to encode_plus and batch_encode_plus
        tokenizer = self.get_tokenizer()
        # create three inputs of length 800, 1000, and 1200
        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
        np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]

        # Test not batched input
        encoded_sequences_1 = tokenizer(speech_inputs[0], return_tensors="np").input_values
        encoded_sequences_2 = tokenizer(np_speech_inputs[0], return_tensors="np").input_values
        self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))

        # Test batched
        encoded_sequences_1 = tokenizer(speech_inputs, return_tensors="np").input_values
        encoded_sequences_2 = tokenizer(np_speech_inputs, return_tensors="np").input_values
        for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
            self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))

    def test_padding(self, max_length=50):
        def _input_values_have_equal_length(input_values):
            length = len(input_values[0])
            for input_values_slice in input_values[1:]:
                if len(input_values_slice) != length:
                    return False
            return True

        def _input_values_are_equal(input_values_1, input_values_2):
            if len(input_values_1) != len(input_values_2):
                return False

            for input_values_slice_1, input_values_slice_2 in zip(input_values_1, input_values_2):
                if not np.allclose(np.asarray(input_values_slice_1), np.asarray(input_values_slice_2), atol=1e-3):
                    return False
            return True

        tokenizer = self.get_tokenizer()
        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]

        input_values_1 = tokenizer(speech_inputs).input_values
        input_values_2 = tokenizer(speech_inputs, padding="longest").input_values
        input_values_3 = tokenizer(speech_inputs, padding="longest", max_length=1600).input_values

        self.assertFalse(_input_values_have_equal_length(input_values_1))
        self.assertTrue(_input_values_have_equal_length(input_values_2))
        self.assertTrue(_input_values_have_equal_length(input_values_3))
        self.assertTrue(_input_values_are_equal(input_values_2, input_values_3))
        self.assertTrue(len(input_values_1[0]) == 800)
        self.assertTrue(len(input_values_2[0]) == 1200)
        # padding should be 0.0
        self.assertTrue(abs(sum(np.asarray(input_values_2[0])[800:])) < 1e-3)
        self.assertTrue(abs(sum(np.asarray(input_values_2[1])[1000:])) < 1e-3)

        input_values_4 = tokenizer(speech_inputs, padding="max_length").input_values
        input_values_5 = tokenizer(speech_inputs, padding="max_length", max_length=1600).input_values

        self.assertTrue(_input_values_are_equal(input_values_1, input_values_4))
        self.assertTrue(input_values_5.shape, (3, 1600))
        # padding should be 0.0
        self.assertTrue(abs(sum(np.asarray(input_values_5[0])[800:1200])) < 1e-3)

        input_values_6 = tokenizer(speech_inputs, pad_to_multiple_of=500).input_values
        input_values_7 = tokenizer(speech_inputs, padding="longest", pad_to_multiple_of=500).input_values
        input_values_8 = tokenizer(
            speech_inputs, padding="max_length", pad_to_multiple_of=500, max_length=2400
        ).input_values

        self.assertTrue(_input_values_are_equal(input_values_1, input_values_6))
        self.assertTrue(input_values_7.shape, (3, 1500))
        self.assertTrue(input_values_8.shape, (3, 2500))
        # padding should be 0.0
        self.assertTrue(abs(sum(np.asarray(input_values_7[0])[800:])) < 1e-3)
        self.assertTrue(abs(sum(np.asarray(input_values_7[1])[1000:])) < 1e-3)
        self.assertTrue(abs(sum(np.asarray(input_values_7[2])[1200:])) < 1e-3)
        self.assertTrue(abs(sum(np.asarray(input_values_8[0])[800:])) < 1e-3)
        self.assertTrue(abs(sum(np.asarray(input_values_8[1])[1000:])) < 1e-3)
        self.assertTrue(abs(sum(np.asarray(input_values_8[2])[1200:])) < 1e-3)

    def test_save_pretrained(self):
        pretrained_name = list(self.tokenizer_class.pretrained_vocab_files_map["vocab_file"].keys())[0]
        tokenizer = self.tokenizer_class.from_pretrained(pretrained_name)
        tmpdirname2 = tempfile.mkdtemp()

        tokenizer_files = tokenizer.save_pretrained(tmpdirname2)
        self.assertSequenceEqual(
            sorted(tuple(VOCAB_FILES_NAMES.values()) + ("special_tokens_map.json", "added_tokens.json")),
            sorted(tuple(x.split("/")[-1] for x in tokenizer_files)),
        )

        # Checks everything loads correctly in the same way
        tokenizer_p = self.tokenizer_class.from_pretrained(tmpdirname2)

        # Check special tokens are set accordingly on Rust and Python
        for key in tokenizer.special_tokens_map:
            self.assertTrue(key in tokenizer_p.special_tokens_map)

        shutil.rmtree(tmpdirname2)

    def test_get_vocab(self):
        tokenizer = self.get_tokenizer()
        vocab_dict = tokenizer.get_vocab()
        self.assertIsInstance(vocab_dict, dict)
        self.assertGreaterEqual(len(tokenizer), len(vocab_dict))

        vocab = [tokenizer.convert_ids_to_tokens(i) for i in range(len(tokenizer))]
        self.assertEqual(len(vocab), len(tokenizer))

        tokenizer.add_tokens(["asdfasdfasdfasdf"])
        vocab = [tokenizer.convert_ids_to_tokens(i) for i in range(len(tokenizer))]
        self.assertEqual(len(vocab), len(tokenizer))

    def test_save_and_load_tokenizer(self):
        tokenizer = self.get_tokenizer()
        # Isolate this from the other tests because we save additional tokens/etc
        tmpdirname = tempfile.mkdtemp()

        sample_ids = [0, 1, 4, 8, 9, 0, 12]
        before_tokens = tokenizer.decode(sample_ids)
        before_vocab = tokenizer.get_vocab()
        tokenizer.save_pretrained(tmpdirname)

        after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
        after_tokens = after_tokenizer.decode(sample_ids)
        after_vocab = after_tokenizer.get_vocab()

        self.assertEqual(before_tokens, after_tokens)
        self.assertDictEqual(before_vocab, after_vocab)

        shutil.rmtree(tmpdirname)

        tokenizer = self.get_tokenizer()

        # Isolate this from the other tests because we save additional tokens/etc
        tmpdirname = tempfile.mkdtemp()

        before_len = len(tokenizer)
        sample_ids = [0, 1, 4, 8, 9, 0, 12, before_len, before_len + 1, before_len + 2]
        tokenizer.add_tokens(["?", "!"])
        additional_special_tokens = tokenizer.additional_special_tokens
        additional_special_tokens.append("&")
        tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
        before_tokens = tokenizer.decode(sample_ids)
        before_vocab = tokenizer.get_vocab()
        tokenizer.save_pretrained(tmpdirname)

        after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
        after_tokens = after_tokenizer.decode(sample_ids)
        after_vocab = after_tokenizer.get_vocab()

        self.assertEqual(before_tokens, after_tokens)
        self.assertDictEqual(before_vocab, after_vocab)

        self.assertTrue(len(tokenizer), before_len + 3)
        self.assertTrue(len(tokenizer), len(after_tokenizer))
        shutil.rmtree(tmpdirname)

    def test_tokenizer_slow_store_full_signature(self):
        signature = inspect.signature(self.tokenizer_class.__init__)
        tokenizer = self.get_tokenizer()

        for parameter_name, parameter in signature.parameters.items():
            if parameter.default != inspect.Parameter.empty:
                self.assertIn(parameter_name, tokenizer.init_kwargs)
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

    def test_zero_mean_unit_variance_normalization(self):
        tokenizer = self.get_tokenizer(do_normalize=True)
        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
        processed = tokenizer(speech_inputs, padding="longest")
        input_values = processed.input_values

        def _check_zero_mean_unit_variance(input_vector):
            self.assertTrue(np.abs(np.mean(input_vector)) < 1e-3)
            self.assertTrue(np.abs(np.var(input_vector) - 1) < 1e-3)

        _check_zero_mean_unit_variance(input_values[0, :800])
        _check_zero_mean_unit_variance(input_values[1, :1000])
        _check_zero_mean_unit_variance(input_values[2])

    def test_return_attention_mask(self):
        speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]

        # default case -> no attention_mask is returned
        tokenizer = self.get_tokenizer()
        processed = tokenizer(speech_inputs)
        self.assertNotIn("attention_mask", processed)

        # wav2vec2-lv60 -> return attention_mask
        tokenizer = self.get_tokenizer(return_attention_mask=True)
        processed = tokenizer(speech_inputs, padding="longest")

        self.assertIn("attention_mask", processed)
        self.assertListEqual(list(processed.attention_mask.shape), list(processed.input_values.shape))
        self.assertListEqual(processed.attention_mask.sum(-1).tolist(), [800, 1000, 1200])

    @slow
    def test_pretrained_checkpoints_are_set_correctly(self):
        # this test makes sure that models that are using
        # group norm don't have their tokenizer return the
        # attention_mask
        for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST:
            config = Wav2Vec2Config.from_pretrained(model_id)
            tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_id)

            # only "layer" feature extraction norm should make use of
            # attention_mask
            self.assertEqual(tokenizer.return_attention_mask, config.feat_extract_norm == "layer")