run_ner.py 26.4 KB
Newer Older
Matt's avatar
Matt committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
17
Fine-tuning a 馃 Transformers model on token classification tasks (NER, POS, CHUNKS)
Matt's avatar
Matt committed
18
19
"""

Matt's avatar
Matt committed
20
import json
Matt's avatar
Matt committed
21
import logging
Matt's avatar
Matt committed
22
import os
Matt's avatar
Matt committed
23
24
25
26
27
import random
from dataclasses import dataclass, field
from typing import Optional

import datasets
28
import evaluate
Matt's avatar
Matt committed
29
import tensorflow as tf
30
from datasets import ClassLabel, load_dataset
Matt's avatar
Matt committed
31
32
33
34
35
36

import transformers
from transformers import (
    CONFIG_MAPPING,
    AutoConfig,
    AutoTokenizer,
Matt's avatar
Matt committed
37
    DataCollatorForTokenClassification,
Matt's avatar
Matt committed
38
    HfArgumentParser,
Matt's avatar
Matt committed
39
    PushToHubCallback,
Matt's avatar
Matt committed
40
41
42
43
44
    TFAutoModelForTokenClassification,
    TFTrainingArguments,
    create_optimizer,
    set_seed,
)
45
from transformers.utils import send_example_telemetry
Matt's avatar
Matt committed
46
47
48
49
50
from transformers.utils.versions import require_version


logger = logging.getLogger(__name__)
logger.addHandler(logging.StreamHandler())
Matt's avatar
Matt committed
51
require_version("datasets>=1.8.0", "To fix: pip install -r examples/tensorflow/token-classification/requirements.txt")
Matt's avatar
Matt committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77


# region Command-line arguments
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
78
79
    token: str = field(
        default=None,
Matt's avatar
Matt committed
80
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
81
            "help": (
82
83
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
84
            )
Matt's avatar
Matt committed
85
86
        },
    )
87
88
89
90
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
91
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
92
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
93
94
95
96
                "execute code present on the Hub on your local machine."
            )
        },
    )
Matt's avatar
Matt committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
    )
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
    )
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
    )
    text_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
    )
    label_column_name: Optional[str] = field(
        default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_length: Optional[int] = field(default=256, metadata={"help": "Max length (in tokens) for truncation/padding"})
    pad_to_max_length: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
140
141
142
143
144
            "help": (
                "Whether to pad all samples to model maximum sentence length. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
                "efficient on GPU but very bad for TPU."
            )
Matt's avatar
Matt committed
145
146
147
148
149
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
150
151
152
153
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
Matt's avatar
Matt committed
154
155
156
157
158
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
159
160
161
162
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
Matt's avatar
Matt committed
163
164
165
166
167
        },
    )
    max_predict_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
168
169
170
171
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
Matt's avatar
Matt committed
172
173
174
175
176
        },
    )
    label_all_tokens: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
177
178
179
180
            "help": (
                "Whether to put the label for one word on all tokens of generated by that word or just on the "
                "one (in which case the other tokens will have a padding index)."
            )
Matt's avatar
Matt committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
        },
    )
    return_entity_level_metrics: bool = field(
        default=False,
        metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
    )

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
        self.task_name = self.task_name.lower()


# endregion


def main():
    # region Argument Parsing
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
208
209
210
211

    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_ner", model_args, data_args, framework="tensorflow")
Matt's avatar
Matt committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    # endregion

    # region Setup logging
    # we only want one process per machine to log things on the screen.
    # accelerator.is_local_main_process is only True for one process per machine.
    logger.setLevel(logging.INFO)
    datasets.utils.logging.set_verbosity_warning()
    transformers.utils.logging.set_verbosity_info()

    # If passed along, set the training seed now.
    if training_args.seed is not None:
        set_seed(training_args.seed)
    # endregion

    # region Loading datasets
    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets for token classification task available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'tokens' or the first column if no column called
    # 'tokens' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
238
239
240
        raw_datasets = load_dataset(
            data_args.dataset_name,
            data_args.dataset_config_name,
241
            token=model_args.token,
242
        )
Matt's avatar
Matt committed
243
244
245
246
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
247
            extension = data_args.train_file.split(".")[-1]
Matt's avatar
Matt committed
248
249
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
250
            extension = data_args.validation_file.split(".")[-1]
251
252
253
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
254
            token=model_args.token,
255
        )
Matt's avatar
Matt committed
256
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
257
    # https://huggingface.co/docs/datasets/loading_datasets.
Matt's avatar
Matt committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

    if raw_datasets["train"] is not None:
        column_names = raw_datasets["train"].column_names
        features = raw_datasets["train"].features
    else:
        column_names = raw_datasets["validation"].column_names
        features = raw_datasets["validation"].features

    if data_args.text_column_name is not None:
        text_column_name = data_args.text_column_name
    elif "tokens" in column_names:
        text_column_name = "tokens"
    else:
        text_column_name = column_names[0]

    if data_args.label_column_name is not None:
        label_column_name = data_args.label_column_name
    elif f"{data_args.task_name}_tags" in column_names:
        label_column_name = f"{data_args.task_name}_tags"
    else:
        label_column_name = column_names[1]

    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

    if isinstance(features[label_column_name].feature, ClassLabel):
        label_list = features[label_column_name].feature.names
        # No need to convert the labels since they are already ints.
        label_to_id = {i: i for i in range(len(label_list))}
    else:
        label_list = get_label_list(raw_datasets["train"][label_column_name])
        label_to_id = {l: i for i, l in enumerate(label_list)}
    num_labels = len(label_list)
    # endregion

    # region Load config and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    if model_args.config_name:
305
306
307
        config = AutoConfig.from_pretrained(
            model_args.config_name,
            num_labels=num_labels,
308
            token=model_args.token,
309
310
            trust_remote_code=model_args.trust_remote_code,
        )
Matt's avatar
Matt committed
311
    elif model_args.model_name_or_path:
312
313
314
        config = AutoConfig.from_pretrained(
            model_args.model_name_or_path,
            num_labels=num_labels,
315
            token=model_args.token,
316
317
            trust_remote_code=model_args.trust_remote_code,
        )
Matt's avatar
Matt committed
318
319
320
321
322
323
324
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")

    tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
    if not tokenizer_name_or_path:
        raise ValueError(
325
            "You are instantiating a new tokenizer from scratch. This is not supported by this script. "
Matt's avatar
Matt committed
326
327
328
329
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if config.model_type in {"gpt2", "roberta"}:
330
331
332
333
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            use_fast=True,
            add_prefix_space=True,
334
            token=model_args.token,
335
336
            trust_remote_code=model_args.trust_remote_code,
        )
Matt's avatar
Matt committed
337
    else:
338
339
340
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            use_fast=True,
341
            token=model_args.token,
342
343
            trust_remote_code=model_args.trust_remote_code,
        )
Matt's avatar
Matt committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
    # endregion

    # region Preprocessing the raw datasets
    # First we tokenize all the texts.
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.

    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            max_length=data_args.max_length,
            padding=padding,
            truncation=True,
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
        )

        labels = []
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
            label_ids = []
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
                    label_ids.append(-100)
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
                    label_ids.append(label_to_id[label[word_idx]] if data_args.label_all_tokens else -100)
                previous_word_idx = word_idx

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

    processed_raw_datasets = raw_datasets.map(
        tokenize_and_align_labels,
        batched=True,
        remove_columns=raw_datasets["train"].column_names,
        desc="Running tokenizer on dataset",
    )

    train_dataset = processed_raw_datasets["train"]
    eval_dataset = processed_raw_datasets["validation"]

Matt's avatar
Matt committed
395
396
397
398
399
400
401
402
    if data_args.max_train_samples is not None:
        max_train_samples = min(len(train_dataset), data_args.max_train_samples)
        train_dataset = train_dataset.select(range(max_train_samples))

    if data_args.max_eval_samples is not None:
        max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
        eval_dataset = eval_dataset.select(range(max_eval_samples))

Matt's avatar
Matt committed
403
404
405
406
407
408
409
410
411
412
413
    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
    # endregion

    with training_args.strategy.scope():
        # region Initialize model
        if model_args.model_name_or_path:
            model = TFAutoModelForTokenClassification.from_pretrained(
                model_args.model_name_or_path,
                config=config,
414
                token=model_args.token,
415
                trust_remote_code=model_args.trust_remote_code,
Matt's avatar
Matt committed
416
417
418
            )
        else:
            logger.info("Training new model from scratch")
419
            model = TFAutoModelForTokenClassification.from_config(
420
                config, token=model_args.token, trust_remote_code=model_args.trust_remote_code
421
            )
Matt's avatar
Matt committed
422

423
424
        # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
        # on a small vocab and want a smaller embedding size, remove this test.
425
426
427
428
429
430
431
432
433
        embeddings = model.get_input_embeddings()

        # Matt: This is a temporary workaround as we transition our models to exclusively using Keras embeddings.
        #       As soon as the transition is complete, all embeddings should be keras.Embeddings layers, and
        #       the weights will always be in embeddings.embeddings.
        if hasattr(embeddings, "embeddings"):
            embedding_size = embeddings.embeddings.shape[0]
        else:
            embedding_size = embeddings.weight.shape[0]
434
435
        if len(tokenizer) > embedding_size:
            model.resize_token_embeddings(len(tokenizer))
Matt's avatar
Matt committed
436
437
438
        # endregion

        # region Create TF datasets
Matt's avatar
Matt committed
439
440
441

        # We need the DataCollatorForTokenClassification here, as we need to correctly pad labels as
        # well as inputs.
442
        collate_fn = DataCollatorForTokenClassification(tokenizer=tokenizer, return_tensors="np")
Matt's avatar
Matt committed
443
444
        num_replicas = training_args.strategy.num_replicas_in_sync
        total_train_batch_size = training_args.per_device_train_batch_size * num_replicas
Matt's avatar
Matt committed
445
446
447
448
449
450
451
452
453
454
455
456
457
458

        dataset_options = tf.data.Options()
        dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF

        # model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in
        # training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also
        # use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names
        # yourself if you use this method, whereas they are automatically inferred from the model input names when
        # using model.prepare_tf_dataset()
        # For more info see the docs:
        # https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset
        # https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset

        tf_train_dataset = model.prepare_tf_dataset(
Matt's avatar
Matt committed
459
            train_dataset,
Matt's avatar
Matt committed
460
461
            collate_fn=collate_fn,
            batch_size=total_train_batch_size,
Matt's avatar
Matt committed
462
            shuffle=True,
Matt's avatar
Matt committed
463
        ).with_options(dataset_options)
Matt's avatar
Matt committed
464
        total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas
Matt's avatar
Matt committed
465
        tf_eval_dataset = model.prepare_tf_dataset(
Matt's avatar
Matt committed
466
            eval_dataset,
Matt's avatar
Matt committed
467
468
            collate_fn=collate_fn,
            batch_size=total_eval_batch_size,
Matt's avatar
Matt committed
469
            shuffle=False,
Matt's avatar
Matt committed
470
        ).with_options(dataset_options)
Matt's avatar
Matt committed
471
472
473
474

        # endregion

        # region Optimizer, loss and compilation
Matt's avatar
Matt committed
475
476
477
478
479
480
481
482
        num_train_steps = int(len(tf_train_dataset) * training_args.num_train_epochs)
        if training_args.warmup_steps > 0:
            num_warmup_steps = training_args.warmup_steps
        elif training_args.warmup_ratio > 0:
            num_warmup_steps = int(num_train_steps * training_args.warmup_ratio)
        else:
            num_warmup_steps = 0

Matt's avatar
Matt committed
483
484
        optimizer, lr_schedule = create_optimizer(
            init_lr=training_args.learning_rate,
Matt's avatar
Matt committed
485
486
            num_train_steps=num_train_steps,
            num_warmup_steps=num_warmup_steps,
Matt's avatar
Matt committed
487
488
489
490
            adam_beta1=training_args.adam_beta1,
            adam_beta2=training_args.adam_beta2,
            adam_epsilon=training_args.adam_epsilon,
            weight_decay_rate=training_args.weight_decay,
Matt's avatar
Matt committed
491
            adam_global_clipnorm=training_args.max_grad_norm,
Matt's avatar
Matt committed
492
        )
493
494
        # Transformers models compute the right loss for their task by default when labels are passed, and will
        # use this for training unless you specify your own loss function in compile().
Matt's avatar
Matt committed
495
        model.compile(optimizer=optimizer, jit_compile=training_args.xla)
Matt's avatar
Matt committed
496
497
498
        # endregion

        # Metrics
499
        metric = evaluate.load("seqeval", cache_dir=model_args.cache_dir)
Matt's avatar
Matt committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

        def get_labels(y_pred, y_true):
            # Transform predictions and references tensos to numpy arrays

            # Remove ignored index (special tokens)
            true_predictions = [
                [label_list[p] for (p, l) in zip(pred, gold_label) if l != -100]
                for pred, gold_label in zip(y_pred, y_true)
            ]
            true_labels = [
                [label_list[l] for (p, l) in zip(pred, gold_label) if l != -100]
                for pred, gold_label in zip(y_pred, y_true)
            ]
            return true_predictions, true_labels

        def compute_metrics():
            results = metric.compute()
            if data_args.return_entity_level_metrics:
                # Unpack nested dictionaries
                final_results = {}
                for key, value in results.items():
                    if isinstance(value, dict):
                        for n, v in value.items():
                            final_results[f"{key}_{n}"] = v
                    else:
                        final_results[key] = value
                return final_results
            else:
                return {
                    "precision": results["overall_precision"],
                    "recall": results["overall_recall"],
                    "f1": results["overall_f1"],
                    "accuracy": results["overall_accuracy"],
                }

        # endregion

Matt's avatar
Matt committed
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
        # region Preparing push_to_hub and model card
        push_to_hub_model_id = training_args.push_to_hub_model_id
        model_name = model_args.model_name_or_path.split("/")[-1]
        if not push_to_hub_model_id:
            if data_args.dataset_name is not None:
                push_to_hub_model_id = f"{model_name}-finetuned-{data_args.dataset_name}"
            else:
                push_to_hub_model_id = f"{model_name}-finetuned-token-classification"

        model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "token-classification"}
        if data_args.dataset_name is not None:
            model_card_kwargs["dataset_tags"] = data_args.dataset_name
            if data_args.dataset_config_name is not None:
                model_card_kwargs["dataset_args"] = data_args.dataset_config_name
                model_card_kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
            else:
                model_card_kwargs["dataset"] = data_args.dataset_name

        if training_args.push_to_hub:
            callbacks = [
                PushToHubCallback(
                    output_dir=training_args.output_dir,
559
560
                    hub_model_id=push_to_hub_model_id,
                    hub_token=training_args.push_to_hub_token,
Matt's avatar
Matt committed
561
562
563
564
565
566
567
568
                    tokenizer=tokenizer,
                    **model_card_kwargs,
                )
            ]
        else:
            callbacks = []
        # endregion

Matt's avatar
Matt committed
569
570
571
572
573
574
575
        # region Training
        logger.info("***** Running training *****")
        logger.info(f"  Num examples = {len(train_dataset)}")
        logger.info(f"  Num Epochs = {training_args.num_train_epochs}")
        logger.info(f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
        logger.info(f"  Total train batch size = {total_train_batch_size}")
        # Only show the progress bar once on each machine.
Matt's avatar
Matt committed
576

Matt's avatar
Matt committed
577
578
579
580
        model.fit(
            tf_train_dataset,
            validation_data=tf_eval_dataset,
            epochs=int(training_args.num_train_epochs),
Matt's avatar
Matt committed
581
            callbacks=callbacks,
Matt's avatar
Matt committed
582
583
584
585
        )
        # endregion

        # region Predictions
Matt's avatar
Matt committed
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
        # If you have variable batch sizes (i.e. not using pad_to_max_length), then
        # this bit might fail on TF < 2.8 because TF can't concatenate outputs of varying seq
        # length from predict().

        try:
            predictions = model.predict(tf_eval_dataset, batch_size=training_args.per_device_eval_batch_size)["logits"]
        except tf.python.framework.errors_impl.InvalidArgumentError:
            raise ValueError(
                "Concatenating predictions failed! If your version of TensorFlow is 2.8.0 or older "
                "then you will need to use --pad_to_max_length to generate predictions, as older "
                "versions of TensorFlow cannot concatenate variable-length predictions as RaggedTensor."
            )
        if isinstance(predictions, tf.RaggedTensor):
            predictions = predictions.to_tensor(default_value=-100)
        predictions = tf.math.argmax(predictions, axis=-1).numpy()
        if "label" in eval_dataset:
            labels = eval_dataset.with_format("tf")["label"]
        else:
            labels = eval_dataset.with_format("tf")["labels"]
        if isinstance(labels, tf.RaggedTensor):
            labels = labels.to_tensor(default_value=-100)
        labels = labels.numpy()
        attention_mask = eval_dataset.with_format("tf")["attention_mask"]
        if isinstance(attention_mask, tf.RaggedTensor):
            attention_mask = attention_mask.to_tensor(default_value=-100)
        attention_mask = attention_mask.numpy()
        labels[attention_mask == 0] = -100
Matt's avatar
Matt committed
613
614
615
616
617
618
619
620
621
622
        preds, refs = get_labels(predictions, labels)
        metric.add_batch(
            predictions=preds,
            references=refs,
        )
        eval_metric = compute_metrics()
        logger.info("Evaluation metrics:")
        for key, val in eval_metric.items():
            logger.info(f"{key}: {val:.4f}")

Matt's avatar
Matt committed
623
624
625
626
627
        if training_args.output_dir is not None:
            output_eval_file = os.path.join(training_args.output_dir, "all_results.json")
            with open(output_eval_file, "w") as writer:
                writer.write(json.dumps(eval_metric))
        # endregion
Matt's avatar
Matt committed
628

Matt's avatar
Matt committed
629
630
    if training_args.output_dir is not None and not training_args.push_to_hub:
        # If we're not pushing to hub, at least save a local copy when we're done
Matt's avatar
Matt committed
631
632
633
634
635
        model.save_pretrained(training_args.output_dir)


if __name__ == "__main__":
    main()