run_multiple_choice.py 7.84 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
erenup's avatar
erenup committed
16
""" Finetuning the library models for multiple choice (Bert, Roberta, XLNet)."""
17
18
19
20


import logging
import os
Julien Chaumond's avatar
Julien Chaumond committed
21
22
from dataclasses import dataclass, field
from typing import Dict, Optional
23
24
25

import numpy as np

26
import transformers
27
from transformers import (
Julien Chaumond's avatar
Julien Chaumond committed
28
29
30
31
32
33
34
35
    AutoConfig,
    AutoModelForMultipleChoice,
    AutoTokenizer,
    EvalPrediction,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    set_seed,
36
)
37
from transformers.trainer_utils import is_main_process
Julien Chaumond's avatar
Julien Chaumond committed
38
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
Aymeric Augustin's avatar
Aymeric Augustin committed
39

40
41
42
43
44
45
46
47

logger = logging.getLogger(__name__)


def simple_accuracy(preds, labels):
    return (preds == labels).mean()


Julien Chaumond's avatar
Julien Chaumond committed
48
49
50
51
52
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
53

Julien Chaumond's avatar
Julien Chaumond committed
54
55
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
56
    )
Julien Chaumond's avatar
Julien Chaumond committed
57
58
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
59
    )
Julien Chaumond's avatar
Julien Chaumond committed
60
61
62
63
64
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
65
    )
66
67


Julien Chaumond's avatar
Julien Chaumond committed
68
69
70
71
72
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
73

Julien Chaumond's avatar
Julien Chaumond committed
74
75
76
    task_name: str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys())})
    data_dir: str = field(metadata={"help": "Should contain the data files for the task."})
    max_seq_length: int = field(
77
        default=128,
Julien Chaumond's avatar
Julien Chaumond committed
78
79
80
81
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
82
    )
Julien Chaumond's avatar
Julien Chaumond committed
83
84
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
85
86
87
    )


Julien Chaumond's avatar
Julien Chaumond committed
88
89
90
91
92
93
94
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
95

96
    if (
Julien Chaumond's avatar
Julien Chaumond committed
97
98
99
100
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
101
102
    ):
        raise ValueError(
Julien Chaumond's avatar
Julien Chaumond committed
103
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
104
        )
105
106

    # Setup logging
107
108
109
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
Julien Chaumond's avatar
Julien Chaumond committed
110
        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
111
112
113
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
Julien Chaumond's avatar
Julien Chaumond committed
114
115
116
117
118
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
119
    )
120
121
122
123
124
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
Julien Chaumond's avatar
Julien Chaumond committed
125
    logger.info("Training/evaluation parameters %s", training_args)
126
127

    # Set seed
Julien Chaumond's avatar
Julien Chaumond committed
128
    set_seed(training_args.seed)
129

Julien Chaumond's avatar
Julien Chaumond committed
130
131
132
133
134
135
    try:
        processor = processors[data_args.task_name]()
        label_list = processor.get_labels()
        num_labels = len(label_list)
    except KeyError:
        raise ValueError("Task not found: %s" % (data_args.task_name))
136
137

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
138
139
140
141
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
142

Julien Chaumond's avatar
Julien Chaumond committed
143
144
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
145
        num_labels=num_labels,
Julien Chaumond's avatar
Julien Chaumond committed
146
147
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
148
    )
Julien Chaumond's avatar
Julien Chaumond committed
149
150
151
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
152
    )
Julien Chaumond's avatar
Julien Chaumond committed
153
154
155
    model = AutoModelForMultipleChoice.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
156
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
        cache_dir=model_args.cache_dir,
    )

    # Get datasets
    train_dataset = (
        MultipleChoiceDataset(
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            task=data_args.task_name,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.train,
        )
        if training_args.do_train
        else None
    )
    eval_dataset = (
        MultipleChoiceDataset(
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            task=data_args.task_name,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.dev,
        )
        if training_args.do_eval
        else None
184
    )
185

Julien Chaumond's avatar
Julien Chaumond committed
186
187
188
    def compute_metrics(p: EvalPrediction) -> Dict:
        preds = np.argmax(p.predictions, axis=1)
        return {"acc": simple_accuracy(preds, p.label_ids)}
189

Julien Chaumond's avatar
Julien Chaumond committed
190
191
192
193
194
195
196
197
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        compute_metrics=compute_metrics,
    )
198
199

    # Training
Julien Chaumond's avatar
Julien Chaumond committed
200
201
202
203
    if training_args.do_train:
        trainer.train(
            model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
        )
204
205
206
207
208
        trainer.save_model()
        # For convenience, we also re-save the tokenizer to the same directory,
        # so that you can share your model easily on huggingface.co/models =)
        if trainer.is_world_master():
            tokenizer.save_pretrained(training_args.output_dir)
209
210
211

    # Evaluation
    results = {}
212
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
213
214
215
216
217
        logger.info("*** Evaluate ***")

        result = trainer.evaluate()

        output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")
218
219
220
221
222
223
        if trainer.is_world_master():
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key, value in result.items():
                    logger.info("  %s = %s", key, value)
                    writer.write("%s = %s\n" % (key, value))
224

225
                results.update(result)
Julien Chaumond's avatar
Julien Chaumond committed
226

227
228
229
    return results


230
231
232
233
234
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


235
236
if __name__ == "__main__":
    main()