run_language_modeling.py 13.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
"""
17
18
19
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, CTRL, BERT, RoBERTa, XLNet).
GPT, GPT-2 and CTRL are fine-tuned using a causal language modeling (CLM) loss. BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss. XLNet is fine-tuned using a permutation language modeling (PLM) loss.
20
"""
21
22
23


import logging
Julien Chaumond's avatar
Julien Chaumond committed
24
import math
25
import os
Julien Chaumond's avatar
Julien Chaumond committed
26
from dataclasses import dataclass, field
27
from glob import glob
Julien Chaumond's avatar
Julien Chaumond committed
28
from typing import Optional
29

30
31
from torch.utils.data import ConcatDataset

32
import transformers
33
from transformers import (
Julien Chaumond's avatar
Julien Chaumond committed
34
    CONFIG_MAPPING,
35
36
37
38
    MODEL_WITH_LM_HEAD_MAPPING,
    AutoConfig,
    AutoModelWithLMHead,
    AutoTokenizer,
Julien Chaumond's avatar
Julien Chaumond committed
39
    DataCollatorForLanguageModeling,
40
    DataCollatorForPermutationLanguageModeling,
41
    DataCollatorForWholeWordMask,
Julien Chaumond's avatar
Julien Chaumond committed
42
43
    HfArgumentParser,
    LineByLineTextDataset,
44
    LineByLineWithRefDataset,
45
    PreTrainedTokenizer,
Julien Chaumond's avatar
Julien Chaumond committed
46
47
48
49
    TextDataset,
    Trainer,
    TrainingArguments,
    set_seed,
50
)
51
from transformers.trainer_utils import is_main_process
52

53

54
logger = logging.getLogger(__name__)
55
56


57
58
MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
59
60


Julien Chaumond's avatar
Julien Chaumond committed
61
62
63
64
65
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """
66

Julien Chaumond's avatar
Julien Chaumond committed
67
68
69
70
    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "The model checkpoint for weights initialization. Leave None if you want to train a model from scratch."
71
72
        },
    )
Julien Chaumond's avatar
Julien Chaumond committed
73
74
75
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
76
    )
Julien Chaumond's avatar
Julien Chaumond committed
77
78
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
79
    )
Julien Chaumond's avatar
Julien Chaumond committed
80
81
82
83
84
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
85
    )
86
87


Julien Chaumond's avatar
Julien Chaumond committed
88
89
90
91
92
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
93

Julien Chaumond's avatar
Julien Chaumond committed
94
95
    train_data_file: Optional[str] = field(
        default=None, metadata={"help": "The input training data file (a text file)."}
96
    )
97
    train_data_files: Optional[str] = field(
sgugger's avatar
sgugger committed
98
99
        default=None,
        metadata={
100
            "help": "The input training data files (multiple files in glob format). "
sgugger's avatar
sgugger committed
101
102
            "Very often splitting large files to smaller files can prevent tokenizer going out of memory"
        },
103
    )
Julien Chaumond's avatar
Julien Chaumond committed
104
    eval_data_file: Optional[str] = field(
105
        default=None,
Julien Chaumond's avatar
Julien Chaumond committed
106
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
Julien Chaumond's avatar
Julien Chaumond committed
107
    )
108
    train_ref_file: Optional[str] = field(
109
        default=None,
110
111
112
113
114
        metadata={"help": "An optional input train ref data file for whole word mask in Chinese."},
    )
    eval_ref_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."},
115
    )
Julien Chaumond's avatar
Julien Chaumond committed
116
117
118
    line_by_line: bool = field(
        default=False,
        metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
119
120
    )

Julien Chaumond's avatar
Julien Chaumond committed
121
122
    mlm: bool = field(
        default=False, metadata={"help": "Train with masked-language modeling loss instead of language modeling."}
123
    )
124
    whole_word_mask: bool = field(default=False, metadata={"help": "Whether ot not to use whole word mask."})
Julien Chaumond's avatar
Julien Chaumond committed
125
126
    mlm_probability: float = field(
        default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
127
    )
128
129
130
131
132
133
134
135
136
    plm_probability: float = field(
        default=1 / 6,
        metadata={
            "help": "Ratio of length of a span of masked tokens to surrounding context length for permutation language modeling."
        },
    )
    max_span_length: int = field(
        default=5, metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."}
    )
137

Julien Chaumond's avatar
Julien Chaumond committed
138
    block_size: int = field(
139
        default=-1,
Julien Chaumond's avatar
Julien Chaumond committed
140
141
142
143
144
        metadata={
            "help": "Optional input sequence length after tokenization."
            "The training dataset will be truncated in block of this size for training."
            "Default to the model max input length for single sentence inputs (take into account special tokens)."
        },
145
    )
Julien Chaumond's avatar
Julien Chaumond committed
146
147
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
148
149
150
    )


151
152
153
154
155
156
def get_dataset(
    args: DataTrainingArguments,
    tokenizer: PreTrainedTokenizer,
    evaluate: bool = False,
    cache_dir: Optional[str] = None,
):
157
    def _dataset(file_path, ref_path=None):
158
        if args.line_by_line:
159
            if ref_path is not None:
160
161
162
163
164
165
                if not args.whole_word_mask or not args.mlm:
                    raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask")
                return LineByLineWithRefDataset(
                    tokenizer=tokenizer,
                    file_path=file_path,
                    block_size=args.block_size,
166
                    ref_path=ref_path,
167
168
                )

169
170
171
172
173
174
175
176
177
178
179
            return LineByLineTextDataset(tokenizer=tokenizer, file_path=file_path, block_size=args.block_size)
        else:
            return TextDataset(
                tokenizer=tokenizer,
                file_path=file_path,
                block_size=args.block_size,
                overwrite_cache=args.overwrite_cache,
                cache_dir=cache_dir,
            )

    if evaluate:
180
        return _dataset(args.eval_data_file, args.eval_ref_file)
181
182
    elif args.train_data_files:
        return ConcatDataset([_dataset(f) for f in glob(args.train_data_files)])
Julien Chaumond's avatar
Julien Chaumond committed
183
    else:
184
        return _dataset(args.train_data_file, args.train_ref_file)
185

186

Julien Chaumond's avatar
Julien Chaumond committed
187
188
189
190
191
192
193
194
195
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if data_args.eval_data_file is None and training_args.do_eval:
196
197
198
199
200
        raise ValueError(
            "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
            "or remove the --do_eval argument."
        )
    if (
Julien Chaumond's avatar
Julien Chaumond committed
201
202
203
204
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
205
206
    ):
        raise ValueError(
Julien Chaumond's avatar
Julien Chaumond committed
207
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
208
        )
209
210

    # Setup logging
211
212
213
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
Julien Chaumond's avatar
Julien Chaumond committed
214
        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
215
216
217
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
Julien Chaumond's avatar
Julien Chaumond committed
218
219
220
221
222
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
223
    )
224
225
226
227
228
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
Julien Chaumond's avatar
Julien Chaumond committed
229
    logger.info("Training/evaluation parameters %s", training_args)
230
231

    # Set seed
Julien Chaumond's avatar
Julien Chaumond committed
232
    set_seed(training_args.seed)
233
234

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
235
236
237
238
239
240
241
242
243
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
244
    else:
Julien Chaumond's avatar
Julien Chaumond committed
245
246
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
247

Julien Chaumond's avatar
Julien Chaumond committed
248
249
250
251
    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir)
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
252
    else:
253
        raise ValueError(
254
255
            "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another script, save it,"
            "and load it from here, using --tokenizer_name"
256
257
        )

Julien Chaumond's avatar
Julien Chaumond committed
258
    if model_args.model_name_or_path:
259
        model = AutoModelWithLMHead.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
260
261
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
262
            config=config,
Julien Chaumond's avatar
Julien Chaumond committed
263
            cache_dir=model_args.cache_dir,
264
265
266
        )
    else:
        logger.info("Training new model from scratch")
267
        model = AutoModelWithLMHead.from_config(config)
268

Julien Chaumond's avatar
Julien Chaumond committed
269
    model.resize_token_embeddings(len(tokenizer))
270

Julien Chaumond's avatar
Julien Chaumond committed
271
272
    if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
        raise ValueError(
273
274
            "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the"
            "--mlm flag (masked language modeling)."
Julien Chaumond's avatar
Julien Chaumond committed
275
        )
276

Julien Chaumond's avatar
Julien Chaumond committed
277
278
279
280
281
    if data_args.block_size <= 0:
        data_args.block_size = tokenizer.max_len
        # Our input block size will be the max possible for the model
    else:
        data_args.block_size = min(data_args.block_size, tokenizer.max_len)
282

Julien Chaumond's avatar
Julien Chaumond committed
283
    # Get datasets
284

285
286
287
288
289
290
291
292
    train_dataset = (
        get_dataset(data_args, tokenizer=tokenizer, cache_dir=model_args.cache_dir) if training_args.do_train else None
    )
    eval_dataset = (
        get_dataset(data_args, tokenizer=tokenizer, evaluate=True, cache_dir=model_args.cache_dir)
        if training_args.do_eval
        else None
    )
293
294
    if config.model_type == "xlnet":
        data_collator = DataCollatorForPermutationLanguageModeling(
Lysandre's avatar
Lysandre committed
295
296
297
            tokenizer=tokenizer,
            plm_probability=data_args.plm_probability,
            max_span_length=data_args.max_span_length,
298
299
        )
    else:
300
301
302
303
304
305
306
307
        if data_args.mlm and data_args.whole_word_mask:
            data_collator = DataCollatorForWholeWordMask(
                tokenizer=tokenizer, mlm_probability=data_args.mlm_probability
            )
        else:
            data_collator = DataCollatorForLanguageModeling(
                tokenizer=tokenizer, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability
            )
308

Julien Chaumond's avatar
Julien Chaumond committed
309
310
311
312
313
314
315
316
317
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        data_collator=data_collator,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        prediction_loss_only=True,
    )
318

Julien Chaumond's avatar
Julien Chaumond committed
319
320
321
322
323
324
325
326
327
    # Training
    if training_args.do_train:
        model_path = (
            model_args.model_name_or_path
            if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path)
            else None
        )
        trainer.train(model_path=model_path)
        trainer.save_model()
328
329
330
331
        # For convenience, we also re-save the tokenizer to the same directory,
        # so that you can share your model easily on huggingface.co/models =)
        if trainer.is_world_master():
            tokenizer.save_pretrained(training_args.output_dir)
332

Julien Chaumond's avatar
Julien Chaumond committed
333
334
    # Evaluation
    results = {}
335
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
336
        logger.info("*** Evaluate ***")
337

Julien Chaumond's avatar
Julien Chaumond committed
338
        eval_output = trainer.evaluate()
339

340
        perplexity = math.exp(eval_output["eval_loss"])
Julien Chaumond's avatar
Julien Chaumond committed
341
        result = {"perplexity": perplexity}
342

Julien Chaumond's avatar
Julien Chaumond committed
343
        output_eval_file = os.path.join(training_args.output_dir, "eval_results_lm.txt")
344
345
346
347
348
349
        if trainer.is_world_master():
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))
                    writer.write("%s = %s\n" % (key, str(result[key])))
350

Julien Chaumond's avatar
Julien Chaumond committed
351
        results.update(result)
352
353
354
355

    return results


356
357
358
359
360
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


361
if __name__ == "__main__":
altsoph's avatar
altsoph committed
362
    main()