test_tokenization_byt5.py 7.64 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# coding=utf-8
# Copyright 2020 Google T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import shutil
import tempfile
import unittest

from transformers import BatchEncoding, ByT5Tokenizer
from transformers.file_utils import cached_property, is_tf_available, is_torch_available

from .test_tokenization_common import TokenizerTesterMixin


if is_torch_available():
    FRAMEWORK = "pt"
elif is_tf_available():
    FRAMEWORK = "tf"
else:
    FRAMEWORK = "jax"


class ByT5TokenizationTest(TokenizerTesterMixin, unittest.TestCase):

    tokenizer_class = ByT5Tokenizer
    test_rust_tokenizer = False

    def setUp(self):
        super().setUp()
        tokenizer = ByT5Tokenizer()
        tokenizer.save_pretrained(self.tmpdirname)

    @cached_property
    def t5_base_tokenizer(self):
        return ByT5Tokenizer.from_pretrained("google/byt5-small")

    def get_tokenizer(self, **kwargs) -> ByT5Tokenizer:
        return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)

    def test_eos_treatment(self):
        tokenizer = self.t5_base_tokenizer
        batch_with_eos_added = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"])
        batch_without_eos_added = tokenizer(["hi", "I went to the gym", ""])
        self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"])

    def test_prepare_batch_integration(self):
        tokenizer = self.t5_base_tokenizer
        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
        # fmt: off
        expected_src_tokens = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
        # fmt: on
        batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK)
        self.assertIsInstance(batch, BatchEncoding)

        if FRAMEWORK != "jax":
            result = list(batch.input_ids.numpy()[0])
        else:
            result = list(batch.input_ids.tolist()[0])

        self.assertListEqual(expected_src_tokens, result)

        self.assertEqual((2, 37), batch.input_ids.shape)
        self.assertEqual((2, 37), batch.attention_mask.shape)

    def test_empty_target_text(self):
        tokenizer = self.t5_base_tokenizer
        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
        batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK)
        # check if input_ids are returned and no decoder_input_ids
        self.assertIn("input_ids", batch)
        self.assertIn("attention_mask", batch)
        self.assertNotIn("decoder_input_ids", batch)
        self.assertNotIn("decoder_attention_mask", batch)

    def test_max_length_integration(self):
        tokenizer = self.t5_base_tokenizer
        tgt_text = [
            "Summary of the text.",
            "Another summary.",
        ]
        with tokenizer.as_target_tokenizer():
            targets = tokenizer(
                tgt_text, max_length=32, padding="max_length", truncation=True, return_tensors=FRAMEWORK
            )
        self.assertEqual(32, targets["input_ids"].shape[1])

    def test_eos_in_input(self):
        tokenizer = self.t5_base_tokenizer
        src_text = ["A long paragraph for summarization. </s>"]
        tgt_text = ["Summary of the text. </s>"]
        # fmt: off
        expected_src_tokens = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
        expected_tgt_tokens = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
        # fmt: on

        batch = tokenizer(src_text)
        with tokenizer.as_target_tokenizer():
            targets = tokenizer(tgt_text)

        self.assertEqual(expected_src_tokens, batch["input_ids"][0])
        self.assertEqual(expected_tgt_tokens, targets["input_ids"][0])

    # cannot use default save_and_load_tokenzier test method because tokenzier has no vocab
    def test_save_and_load_tokenizer(self):
        # safety check on max_len default value so we are sure the test works
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                self.assertNotEqual(tokenizer.model_max_length, 42)

        # Now let's start the test
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Isolate this from the other tests because we save additional tokens/etc
                tmpdirname = tempfile.mkdtemp()

                sample_text = " He is very happy, UNwant\u00E9d,running"
                before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
                tokenizer.save_pretrained(tmpdirname)

                after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
                after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
                self.assertListEqual(before_tokens, after_tokens)

                shutil.rmtree(tmpdirname)

        tokenizers = self.get_tokenizers(model_max_length=42)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Isolate this from the other tests because we save additional tokens/etc
                tmpdirname = tempfile.mkdtemp()

                sample_text = " He is very happy, UNwant\u00E9d,running"
                tokenizer.add_tokens(["bim", "bambam"])
                additional_special_tokens = tokenizer.additional_special_tokens
                additional_special_tokens.append("new_additional_special_token")
                tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
                before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
                tokenizer.save_pretrained(tmpdirname)

                after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
                after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
                self.assertListEqual(before_tokens, after_tokens)
                self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens)
                self.assertEqual(after_tokenizer.model_max_length, 42)

                tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43)
                self.assertEqual(tokenizer.model_max_length, 43)

                shutil.rmtree(tmpdirname)

    # tokenizer can be instantiated without any pretrained files, so no need for pretrained tokenizer list
    def test_pretrained_model_lists(self):
        pass

    # tokenizer does not have vocabulary
    def test_get_vocab(self):
        pass

    # inputs cannot be pretokenized since ids depend on whole input string and not just on single characters
    def test_pretokenized_inputs(self):
        pass

    # tests all ids in vocab => vocab doesn't exist so unnecessary to test
    def test_conversion_reversible(self):
        pass