test_pytorch_examples.py 19.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17

import argparse
18
import json
19
import logging
20
import os
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import sys
Aymeric Augustin's avatar
Aymeric Augustin committed
22
from unittest.mock import patch
Aymeric Augustin's avatar
Aymeric Augustin committed
23

Stas Bekman's avatar
Stas Bekman committed
24
25
import torch

26
from transformers import ViTMAEForPreTraining, Wav2Vec2ForPreTraining
27
from transformers.testing_utils import CaptureLogger, TestCasePlus, get_gpu_count, slow, torch_device
28
from transformers.utils import is_apex_available
29

30
31
32

SRC_DIRS = [
    os.path.join(os.path.dirname(__file__), dirname)
33
34
35
36
37
    for dirname in [
        "text-generation",
        "text-classification",
        "token-classification",
        "language-modeling",
38
        "multiple-choice",
39
        "question-answering",
Sylvain Gugger's avatar
Sylvain Gugger committed
40
41
        "summarization",
        "translation",
42
        "image-classification",
43
        "speech-recognition",
44
        "audio-classification",
45
        "speech-pretraining",
46
        "image-pretraining",
47
        "semantic-segmentation",
48
    ]
49
50
51
52
53
]
sys.path.extend(SRC_DIRS)


if SRC_DIRS is not None:
54
    import run_audio_classification
Sylvain Gugger's avatar
Sylvain Gugger committed
55
    import run_clm
56
57
    import run_generation
    import run_glue
58
    import run_image_classification
59
    import run_mae
60
    import run_mlm
61
    import run_ner
Sylvain Gugger's avatar
Sylvain Gugger committed
62
    import run_qa as run_squad
63
    import run_semantic_segmentation
64
    import run_seq2seq_qa as run_squad_seq2seq
65
    import run_speech_recognition_ctc
66
    import run_speech_recognition_seq2seq
67
    import run_summarization
68
    import run_swag
69
    import run_translation
70
    import run_wav2vec2_pretraining_no_trainer
Aymeric Augustin's avatar
Aymeric Augustin committed
71

72

73
74
75
logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
76

77

78
79
def get_setup_file():
    parser = argparse.ArgumentParser()
80
    parser.add_argument("-f")
81
82
83
84
    args = parser.parse_args()
    return args.f


85
86
87
88
89
90
91
92
93
94
95
def get_results(output_dir):
    results = {}
    path = os.path.join(output_dir, "all_results.json")
    if os.path.exists(path):
        with open(path, "r") as f:
            results = json.load(f)
    else:
        raise ValueError(f"can't find {path}")
    return results


96
def is_cuda_and_apex_available():
97
98
99
100
    is_using_cuda = torch.cuda.is_available() and torch_device == "cuda"
    return is_using_cuda and is_apex_available()


101
102
103
104
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)


105
class ExamplesTests(TestCasePlus):
106
    def test_run_glue(self):
107
108
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
109
            run_glue.py
110
            --model_name_or_path distilbert-base-uncased
111
112
            --output_dir {tmp_dir}
            --overwrite_output_dir
Sylvain Gugger's avatar
Sylvain Gugger committed
113
114
            --train_file ./tests/fixtures/tests_samples/MRPC/train.csv
            --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
115
116
            --do_train
            --do_eval
117
118
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
119
120
121
122
123
            --learning_rate=1e-4
            --max_steps=10
            --warmup_steps=2
            --seed=42
            --max_seq_length=128
124
            """.split()
125

126
        if is_cuda_and_apex_available():
127
            testargs.append("--fp16")
128

129
        with patch.object(sys, "argv", testargs):
130
131
            run_glue.main()
            result = get_results(tmp_dir)
132
            self.assertGreaterEqual(result["eval_accuracy"], 0.75)
133

Sylvain Gugger's avatar
Sylvain Gugger committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    def test_run_clm(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_clm.py
            --model_name_or_path distilgpt2
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
            --do_train
            --do_eval
            --block_size 128
            --per_device_train_batch_size 5
            --per_device_eval_batch_size 5
            --num_train_epochs 2
            --output_dir {tmp_dir}
            --overwrite_output_dir
            """.split()

        if torch.cuda.device_count() > 1:
            # Skipping because there are not enough batches to train the model + would need a drop_last to work.
            return

        if torch_device != "cuda":
            testargs.append("--no_cuda")

        with patch.object(sys, "argv", testargs):
159
160
            run_clm.main()
            result = get_results(tmp_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
161
162
            self.assertLess(result["perplexity"], 100)

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    def test_run_clm_config_overrides(self):
        # test that config_overrides works, despite the misleading dumps of default un-updated
        # config via tokenizer

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_clm.py
            --model_type gpt2
            --tokenizer_name gpt2
            --train_file ./tests/fixtures/sample_text.txt
            --output_dir {tmp_dir}
            --config_overrides n_embd=10,n_head=2
            """.split()

        if torch_device != "cuda":
            testargs.append("--no_cuda")

        logger = run_clm.logger
        with patch.object(sys, "argv", testargs):
            with CaptureLogger(logger) as cl:
                run_clm.main()

        self.assertIn('"n_embd": 10', cl.out)
        self.assertIn('"n_head": 2', cl.out)

188
    def test_run_mlm(self):
189
190
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
191
            run_mlm.py
Julien Chaumond's avatar
Julien Chaumond committed
192
            --model_name_or_path distilroberta-base
193
194
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
195
            --output_dir {tmp_dir}
Julien Chaumond's avatar
Julien Chaumond committed
196
197
198
            --overwrite_output_dir
            --do_train
            --do_eval
199
            --prediction_loss_only
Julien Chaumond's avatar
Julien Chaumond committed
200
            --num_train_epochs=1
201
        """.split()
202
203
204

        if torch_device != "cuda":
            testargs.append("--no_cuda")
205

Julien Chaumond's avatar
Julien Chaumond committed
206
        with patch.object(sys, "argv", testargs):
207
208
            run_mlm.main()
            result = get_results(tmp_dir)
209
            self.assertLess(result["perplexity"], 42)
Julien Chaumond's avatar
Julien Chaumond committed
210

211
    def test_run_ner(self):
212
213
214
        # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
        epochs = 7 if get_gpu_count() > 1 else 2

215
216
217
218
219
220
221
222
223
224
225
226
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_ner.py
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/conll/sample.json
            --validation_file tests/fixtures/tests_samples/conll/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
            --warmup_steps=2
            --learning_rate=2e-4
Sylvain Gugger's avatar
Sylvain Gugger committed
227
228
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=2
229
            --num_train_epochs={epochs}
230
            --seed 7
231
232
233
234
235
236
        """.split()

        if torch_device != "cuda":
            testargs.append("--no_cuda")

        with patch.object(sys, "argv", testargs):
237
238
            run_ner.main()
            result = get_results(tmp_dir)
239
            self.assertGreaterEqual(result["eval_accuracy"], 0.75)
240
241
            self.assertLess(result["eval_loss"], 0.5)

242
    def test_run_squad(self):
243
244
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
Russell Klopfer's avatar
Russell Klopfer committed
245
            run_qa.py
Sylvain Gugger's avatar
Sylvain Gugger committed
246
247
248
249
            --model_name_or_path bert-base-uncased
            --version_2_with_negative
            --train_file tests/fixtures/tests_samples/SQUAD/sample.json
            --validation_file tests/fixtures/tests_samples/SQUAD/sample.json
250
251
            --output_dir {tmp_dir}
            --overwrite_output_dir
252
253
254
255
256
            --max_steps=10
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
Sylvain Gugger's avatar
Sylvain Gugger committed
257
258
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
259
260
        """.split()

261
        with patch.object(sys, "argv", testargs):
262
263
            run_squad.main()
            result = get_results(tmp_dir)
Russell Klopfer's avatar
Russell Klopfer committed
264
265
            self.assertGreaterEqual(result["eval_f1"], 30)
            self.assertGreaterEqual(result["eval_exact"], 30)
266

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
    def test_run_squad_seq2seq(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_seq2seq_qa.py
            --model_name_or_path t5-small
            --context_column context
            --question_column question
            --answer_column answers
            --version_2_with_negative
            --train_file tests/fixtures/tests_samples/SQUAD/sample.json
            --validation_file tests/fixtures/tests_samples/SQUAD/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=10
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
        """.split()

        with patch.object(sys, "argv", testargs):
            run_squad_seq2seq.main()
            result = get_results(tmp_dir)
293
294
            self.assertGreaterEqual(result["eval_f1"], 30)
            self.assertGreaterEqual(result["eval_exact"], 30)
295

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
    def test_run_swag(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_swag.py
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/swag/sample.json
            --validation_file tests/fixtures/tests_samples/swag/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=20
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
        """.split()

        with patch.object(sys, "argv", testargs):
315
316
            run_swag.main()
            result = get_results(tmp_dir)
317
318
            self.assertGreaterEqual(result["eval_accuracy"], 0.8)

319
    def test_generation(self):
320
        testargs = ["run_generation.py", "--prompt=Hello", "--length=10", "--seed=42"]
321

322
        if is_cuda_and_apex_available():
323
324
325
326
327
328
            testargs.append("--fp16")

        model_type, model_name = (
            "--model_type=gpt2",
            "--model_name_or_path=sshleifer/tiny-gpt2",
        )
329
        with patch.object(sys, "argv", testargs + [model_type, model_name]):
330
            result = run_generation.main()
331
            self.assertGreaterEqual(len(result[0]), 10)
332
333

    @slow
334
    def test_run_summarization(self):
335
336
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
337
            run_summarization.py
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
            --model_name_or_path t5-small
            --train_file tests/fixtures/tests_samples/xsum/sample.json
            --validation_file tests/fixtures/tests_samples/xsum/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=50
            --warmup_steps=8
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
        """.split()

        with patch.object(sys, "argv", testargs):
354
            run_summarization.main()
355
            result = get_results(tmp_dir)
356
357
358
359
360
361
            self.assertGreaterEqual(result["eval_rouge1"], 10)
            self.assertGreaterEqual(result["eval_rouge2"], 2)
            self.assertGreaterEqual(result["eval_rougeL"], 7)
            self.assertGreaterEqual(result["eval_rougeLsum"], 7)

    @slow
362
    def test_run_translation(self):
363
364
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
365
            run_translation.py
366
            --model_name_or_path sshleifer/student_marian_en_ro_6_1
367
368
            --source_lang en
            --target_lang ro
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
            --train_file tests/fixtures/tests_samples/wmt16/sample.json
            --validation_file tests/fixtures/tests_samples/wmt16/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=50
            --warmup_steps=8
            --do_train
            --do_eval
            --learning_rate=3e-3
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
            --source_lang en_XX
            --target_lang ro_RO
        """.split()

        with patch.object(sys, "argv", testargs):
386
            run_translation.main()
387
            result = get_results(tmp_dir)
388
            self.assertGreaterEqual(result["eval_bleu"], 30)
389
390
391
392
393
394
395

    def test_run_image_classification(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_image_classification.py
            --output_dir {tmp_dir}
            --model_name_or_path google/vit-base-patch16-224-in21k
396
            --dataset_name hf-internal-testing/cats_vs_dogs_sample
397
398
            --do_train
            --do_eval
399
            --learning_rate 1e-4
400
401
402
403
404
405
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --dataloader_num_workers 16
            --metric_for_best_model accuracy
406
            --max_steps 10
407
            --train_val_split 0.1
408
            --seed 42
409
410
411
412
413
414
415
416
417
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_image_classification.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_accuracy"], 0.8)
418
419
420
421
422
423
424

    def test_run_speech_recognition_ctc(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_speech_recognition_ctc.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
Patrick von Platen's avatar
Patrick von Platen committed
425
            --dataset_name hf-internal-testing/librispeech_asr_dummy
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
            --dataset_config_name clean
            --train_split_name validation
            --eval_split_name validation
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --preprocessing_num_workers 16
            --max_steps 10
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_speech_recognition_ctc.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_loss"], result["train_loss"])
448

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
    def test_run_speech_recognition_seq2seq(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_speech_recognition_seq2seq.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-speech-encoder-decoder
            --dataset_name hf-internal-testing/librispeech_asr_dummy
            --dataset_config_name clean
            --train_split_name validation
            --eval_split_name validation
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 4
            --remove_unused_columns False
            --overwrite_output_dir True
            --preprocessing_num_workers 16
            --max_steps 10
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_speech_recognition_seq2seq.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_loss"], result["train_loss"])

479
480
481
482
483
484
485
486
487
488
    def test_run_audio_classification(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_audio_classification.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
            --dataset_name anton-l/superb_demo
            --dataset_config_name ks
            --train_split_name test
            --eval_split_name test
489
            --audio_column_name audio
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
            --label_column_name label
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --num_train_epochs 10
            --max_steps 50
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_audio_classification.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_loss"], result["train_loss"])
510
511
512
513
514
515
516

    def test_run_wav2vec2_pretraining(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_wav2vec2_pretraining_no_trainer.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
Patrick von Platen's avatar
Patrick von Platen committed
517
            --dataset_name hf-internal-testing/librispeech_asr_dummy
518
519
520
            --dataset_config_names clean
            --dataset_split_names validation
            --learning_rate 1e-4
521
522
            --per_device_train_batch_size 4
            --per_device_eval_batch_size 4
523
            --preprocessing_num_workers 16
524
            --max_train_steps 2
525
526
527
528
529
530
531
532
533
534
535
            --validation_split_percentage 5
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_wav2vec2_pretraining_no_trainer.main()
            model = Wav2Vec2ForPreTraining.from_pretrained(tmp_dir)
            self.assertIsNotNone(model)
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

    def test_run_vit_mae_pretraining(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_mae.py
            --output_dir {tmp_dir}
            --dataset_name hf-internal-testing/cats_vs_dogs_sample
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --dataloader_num_workers 16
            --metric_for_best_model accuracy
            --max_steps 10
            --train_val_split 0.1
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_mae.main()
            model = ViTMAEForPreTraining.from_pretrained(tmp_dir)
            self.assertIsNotNone(model)
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

    def test_run_semantic_segmentation(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_semantic_segmentation.py
            --output_dir {tmp_dir}
            --dataset_name huggingface/semantic-segmentation-test-sample
            --do_train
            --do_eval
            --remove_unused_columns False
            --overwrite_output_dir True
            --max_steps 10
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --seed 32
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_semantic_segmentation.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_overall_accuracy"], 0.1)